
www.manaraa.com

ED 062 135

TULE

INSTI* U riJN

SPONS AGENCY
PUB DATE
NOTE
AVAILABLE FROM

EDRS PRICE
DESCRIPTORS

ABSTRACT

D CUMENT RESUME

SE 013 545

An Tnderqraduate C_urse on Operdtinq Systems

National Aoad.emy of rigineering, Washinit.)n, D.C.
Commission on Education.
National Scie ce Foundation, washingt n, D.C.
Jun 71
40p.
Commission on Education, National Academy
Engineering, 2101 constitution Avenue, N.W.
Washington, D.C. 20418 (Free)

MF-$0.65 HC-$3.29
College Science; *computer Science EduCation; course
Descriptions; *Curriculum Development; *Engineering
Education; Information Science; Instructional
Materials; *Systems Concepts; tJndergraduate Study

This report. is from Task Force VIII at the COSINE
Committee of the Commission on Education of the National Academy of
Rngineering. The task force was established to formulate subject
matter for an elective undergraduate subject on computer operating
systems principles tor students whose major interest is in the
engineering of computer systems and software. The st.ident taking the
oourse should be orovided with an intellectual basis adequate for
understanling and designing operating systems five and ten years in
the future. The universities using this report will vary considerably
with respect to course duration, pace at which new concepts can be
introduced, and student preparation. For these reasons the material
was organized into eight "modules,u each dealing with an important
conceptual component of current knowledge. Each module contains these
features of the model and its manifestations in specific systems, a
topic outliner and a guide to the literature. The modules are: ro
Introduction, (2) Procedure implementation, (3) Processes, (4) Memory

Management, (5) Name Managemento (6) Protection, (7) Resource
Allocation, and (8) Pragmatic Aspects. (Author/T)

www.manaraa.com

An Undergraduate
Course on
Operating Systems
Principles

Cosine Committee

June 1971
DEPARTMENT OF HEALTH,

EDUCATION & WELFARE
OFFICE OF EOLICAJION

THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANI2ATION OHIG
INATING IT POINTS OF VIEW OR CWIN
IONS STATED 00 NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDO
CATION POSITION OR POLICY

Commission on Education

www.manaraa.com

Commiss a on Education 311611

AN UNDERGRADUATE COURSE
ON OPERATING SYSTEMS PRINCIPLES

An Interim Report of the

COSINE COMMITTEE

of the

COMMISSION ON ECIWATION
of the

NATIONAL ACADEMY OF ENGINEERING
2101 Constitution Avenue
Washington, D.C. 20418

June 1971

Task Force on Operating Systems (VIII)

Peter J. Denning, Chairman, Princeton University
Jack B. Dennis, Massachusetts Institute of Technology
Butler Lampson, Xerox Research Laboratory, Pak° Alto
A. Nico Haberman, Carnegie-Mellon University
Richard R. Muntz, University of California, Los Angeles
Dennis Tsichritzis, University of Toronto

www.manaraa.com

COSINE TASK FORCE PUBLICATIONS:

Task Force I Some Specifications for a Computer-Oriented First Course in
Electrical Engineering. September, 1968.

Task Force II An Undergraduate Electrical Engineering Course on Computer
Organization. October, 1968.

Ta k Force III Some SpecificLtions for an Undergraduate Course in Digital
Subsystems. Novemoer, 1968.

Task Force IV

Task Force V

Task Force VI

Task Force V I I

Task Force VIII

An Undergraduate Computer Engineering Option for Electrical
Engineering. January, 1970.

lmodct of Ccmputers on Electrical Engineering EducationA
View from Industry. September, 1969.

Digital Systems Laboratory Courses and Laboratory
Development. March, 1971

In Preparation.

An Undergraduate Course on Operating Systems Principles.
June, 1971.

Available at no charge on request fro

Commission on Education
National Academy of Engineering
2101 Constitution Avenue, N.W.
Washington, D.C. 20418
Tel: (202) 961-1417

These reports have been prepared under the auspices of the Commission on Educafon of
the National Academy of Engineering. Commission policy is to encourage the exploration
of new ideas in engineering education. The Commission has been kept informed of the
discussions of the COSINE Committee but has taken no position on its reports or
recommendations.

The work of the COSINE Committee and these publications are supported in part by the
National Science Foundation under Contract NSF-C310, Task Order No. 161.

www.manaraa.com

ON OPERATING SYSTEMS
AN UNDERGRADUATE COURSE PRINCIPLES

PROLOGUE

Computer-based information systems increasingly influ-
ence our lives. Computers are no longer regarded simply as
ultra-fast ,calculating assistants for engineers and scientists,
or as fanatically accurate clerks for business. Computer sys-
tems are beroming storehouses for an enormous variety of
information both public and private, and repositories for a
vast resource of algorithms devised painstakingly by the
practitioners of all disciplines. rhe presence of computer
information systems is evident to anyone with money in a
bank, who has been a passenger on an airline flight, or who
is even casually acquainted with the space exploration
program or military operations.

Even as the demand for people with a strong conceptual
understanding of issues arising in computer-based information
systems continues to expand, the educational programs
existing in most of our universities are woefully inadequate
with respect to providing professional workers in this impor-
tant field of computer systems design and application.

The subject of computer operating systems, if taupht at
all, is typically a descriptive study of some specific operating
system, with little attention being given to emphasizing the
relevant basic concepts end principles. To worsen matters,
it has been difficult for moet university departments to
develop a new course stressing operating systems principles
partly because the best people in the field are often attracted
to lucrative commercial opportunities, and partly because
there are essentially no suitable textbooks on the subject.
The best source material is found in technic-el papers that
frequently are hard to locate, under -.tend, or correlate.

In view of these circumstances, Task Force VIII of the
COSINE Committee was established to formulate subject
Matter for an undergraduate elective subject on computer
operating systems principles for students whose major
interest is in the engineering of corrouter systems and soft-
ware. The members of Task Force VIII were:

Peter J. Denning, Chairman Princeton University
Jack B. Dennis Massachusetts Institute

of Technology
Butler Lampson Xerox Research Laboratory,

Palo Alto
A. Nico Haberman Carnegie-Mellon University
Richard R. Muntz University of California,

Los Angeles
Dennis Tsichritzis University of Toronto

Plan of the Report

The structure of this report has been motivated by two
considerations. First, the students taking the course should
be provided with an intellectual basis adequate for Ander-
standing and designing operating systems five and ten years
in the future. Second, the universities using this report will
vary considerably with respect to course duration, pace at
which new concepts can be introduced, and student prepare-

tion. For these reasons we have organized the material into
eight "modules," each dealing with material forming an
important conceptual component of current knowledge. Each
module contains these parts: a model for some aspect of
operating systems, 3 description of the features of the model
and its manifestations in specific systems, a topic outline,
and a guide to the literature. We have tried to give more com-
plete discussions of those parts of the course where, in our
cp'nion, the available literature is most inadequate.

We expect that the instructor using this report will select
topics from the modules according to his students' needs,
their level of background and experience, and their ability
to absorb the more advanced material.

The modules are:
1. Introduction
2. Procedures
3. Processes
4. Memory Management
5. Name Management
6. Protection
7. Resource Allocation
8. Pragmatic Aspects

Computer systems take many forms according to their func-
tion, and are controlled by a corresponding variety of oper-
ating systems ("contol," "nupervisor, or executive" pro-
grams). All these systems have certain common character-
istics, and certain common major issues that must be re-
solved if system designers are to achieve a practical result.
These common properties are the subject of Module 1.

An operating system together with the processing and
memory hardware on which it runs, constitutes an environ-
ment for running users' programs, as well as an environment
within which data bases and libraries may reside. The most
fundamental aspect of a .:-,omputer system is the application
of an algorithm or procedure to data to produce a desired
effect. It is important that the student understand the con-
centual basis for the common methods of implementing
procedure application. This is the subject of Module 2.

By their very nature, operating systems involve concur-
rent activities. For efficient resource utilization, input and
output activities are performed simultaneously with program
execution. Multiprogramming is used to achieve better use
of processor and memory capacity by switching between
programs whenever the program being executed comes to a
temporary pause- Since concurrent activities are represented
in contemporary systems by processors executing separate
sequential programs, the study of interacting sequential proc-
esses is fundamental to an understanding of operating sys-
tems. The notions of sequential processes and their inter-
action forms the subject matter of Module 3.

Every practical computer system incorporates several
varieties of physical storage media, characterized by differ-
ent compromises among access time, capacity, and cost.
Memory management is concerned with increasing the sys
tern's efficiency by arranging that the moOt frequently ac-

www.manaraa.com

cessed information resides in fast access memory. As multi-
programming has become more important, and as more im-
portance has been attached to case of programming, so the
trend has been toward management of memory by the oper-
ating system rather than by us-_r programs. These issues are
treated in the context of current memory technology in
Module 4.

Modular programming increases the ability for a user to
construct larger programs from component subprograms
without requiring that the user know the internal operation
of the components. The extent to which a system can sup-
port modular programming will depend on its ability to deal
with names (idcntifiers) in varying contexts and on its ability
to allow shared access to information, both abilities being
related intimately to the conventions used for handling
names. These issues are the subject of Module 5.

The need to protect arises as soon as a computer system
holds procedures and data belonging to more than one in-
dividual. It must not be p, -sible for one user's actions to
disrupt or corrupt service to other users. Access to proce-
dures and data, especially if confidential or proprietary,
must be permitted only with appropriate authorization. The
principles underlying implementations of protection form
the subject matter of Module 6.

Resoorce allocation is concerned with obtaining optimal
utilization of system resources (processor, memory, auxil-
iary storage, and so on) toward meeting the system's oper-
ating objectives (throughput, response times, minimum cost,
and so on). Models of program behavior and the use of
statistical analysis are important to an understanding of
resource allocation. This is the subject of Module 7.

There remain certain issues concerning computer system
operation and design, issues that have not yet been analyzed
definitively in the literature but nonetheless are very impor-
tant. These include reliability, design mefoodologies, imple-
mentation strategies, and performance evaluation. They are
the subject of Modirkle 8.

Relation to Previous COSINE Work and ACM Curriculum 68

The course proposed in this report is designed as an ad-
vanced course to follow basic courses on computer organiza-
tion and programming languages. The COSINE Committee
report of September, 1967 recommended that the operating
systems course be regarded as elective. In contrast, Task
Force VIII recommends that this course be considered, as
much as possible, an integral part of a computer science
program (whether it is a core course will depend on the
needs and resources of a given department). We are able to
reCommend such an increase in the importance of this course
because there now exists a much sounder conceptual basis
for teaching the principles of operating systems than existed
as recently as 1969.

With respect to the ACM computer science curriculum
68 (Comm. ACM 11, 3, March 1968), it was not the inten-
tion of COSINE to "implement" any course in ACM's cur-
riculum. Although the COSINE course is related to ACM's
course 14 (systems programming), it differs in at least three
sign'ficant ways. First, the ACM course description is an
outline, whereas the COSINE course is a detailed specifica-
tion. Second, the ACM outline suggests a descriptive, case-

study" approach, whereas ours is organized along conceptul
lines. Third, ACM emphasizes the techniques of systems pro-
gramming, whereas COSI NE's emphasis is on the principles
of system organization and operation. This shift in emphasis
has been possiblebecause the members of the task force
have been associated closely with current work on advanced
operating systems, the conceptualization of which has taken
place since the preparation of the ACM report.

The material outlined in the Background section of this
report is organized along the lines of courses 12 (programminn
languages) and 13 (computer organization) of the ACM cur-
riculum. Familiarity with a course such as 11 (data structures)
is desirable though not necessary. It must be emphasized
that these ACM courses cover mcuh more than is required
as background for this course. It must be emphasized also
that these particular ACM courses are cited as examples of
possible background courses; the implementation of this
course does not depend on prior implementat on of the
ACM courses.

Project

The committee recommends strongly that the concep-
tual and theoretical material outlined in this report be ac-
companied by a reasonably detailed study of some particular
operating system embodying these concepts. Although the
abstractions used in the various modules of this report serve
to provide the student with an understanding of the princi-
pal components of an operating system, they will do little
to instill insight into how the different mechanisms mesh
into a working whole or into how complexity is engendered.
The instructor may wish to draw examples from a number
of different systems, but the committee believes that the
students should be given the opportunity to understand one
ceimplete design.

The system to be studied in depth should not be too
large and it should have some coherence of design, so that
the student will not be overburdened with irrelevant detail.
On the other hand, the system should have sufficient scope
to illustrate the essential ideas of the course: a mono-
programming batch system would, for example, be unsatis-
factory. Finally, the system should be documented ade-
quately, so that recourse to the operating system code is not
necessary for a detailed understanding of its implementation.
The committee is aware of only a few systems that meet
these requirements. These are listed below, together with
citations of their documentation and addresses from which
the documentation can be obtained. Since the supplies of
the documentation are limited, the committee suggests that
the instructor obtain one copy and arrange with the source
of the document for permission to reproduce enough copies
for his class.

1. RC-4000 Software: Multiprogramming System. (P. B.
Hansen, Ed.) A/S Regnecentralen
Copenhagen, Denmark

2. Cal 6400 Time Sharing System
Director, Computer Center
University of California
Berkeley, California 94720

www.manaraa.com

3. CLICE: Classroom Information and Computing System
(a simplified version of Multics), Rpt. MAC-TR-80.
Project MAC Document Room
545 Technology Square
Cambridge, Mass. 02139

Using the References

In order to avoid overburdening a prospective instructor
or his students, we have paid a great deal of attention to
limiting the size of our bibliography. A citation has been
included only if it satisfies, in our opinion, one or more of
three criteria: 1) it is most relevant to -0 discussion in the
modules, 2) it is the only citation available, or 3) it con:ains
clear exposition and a good bibliography of its own. Th.?,
bibliography appears at the end of the report. Each citation
is of the form [I, namel where i is the index key in the hibli
ography and -name" designates the author or authors. At
the end of each module we have included a Reference List
Guide which summarizes the citations in that module to-
gether with indicators of three kinds:

type: C-conceptual, D-descriptive, E-example, Ttutorial
level: S-student, A-advanced student, 1-instructor
Importance: an integer 1-5 indicating the relative im-

portance of the reference to the module;
integer 1 is most important, 5 least.

Thus, if (i, namel is flagged with (CD,A,3), it is both con-
ceptual and descriptive, appropriate reading for advanced
students, and of importance rank 3. A (liven citation may
appear in several modules with different indicators, as
appropriate for that module.

www.manaraa.com

MODULE 0 BACKGROUND

The student of computer operating systems should have
a good understanding of 1) programming languages, 2) com-
puter processor organization, 3) memory organization and
4) data structures. The discussion to follow indicates the
requ;red level of maturity in these areas. Though not all the
material is essential, if any significant part is unfamiliar to
the student he is not prepared for the course. Deficiencies
in background can be remedied through a self-study review
at the beginning of the course.

0.1 Prow-miming Languages

It is essential that the student be experienced in sym-
bolic programming and be familiar with imPortant language
features such as expressions, data types, data structures,
procedure .eoplication, formal and actual parameters, and
recursion. He should understand the notion of program
rnodularity, Che idea of subprograms which can be used
without knowledge of their internal structure gr operation.
He should also understand how source language statements
aind machine code are related; in particular he should under-
stand the functions of the assembly, loading, and execution
of a program, from the user's standpoint. Discussions of
these topics can be found in [40,Hellerman, Ch. 2] and 133,
Gear, Chs.

0.2 Processor Ornanization

The student should be familiar with at least one computer
procesLor and its instruction set. His understanding should
embrace hardware functions more deeply than implementa-
tion datails; it should encompass how processor f ea tu res,
such as index registers and indirect addressing, relate to the
implementation of programming language features. See [40,
Hellerman, Secs. 8.143.6] , [33, Gear, Ch. 21 and [5, Bell] .

It is particularly important that the student have a basic
knowledge of interrupt mechanisms. [40, Hellerman, Sec.
8.12] [33, Gear, Sec. 2.51 , and [5vBell] . This should in-
clude the types of interrupts commonly provided, the con-
trol (enable, disable) of interrupts, and the distinction be-
tween the arming and firing of an interrupt. It includes com-
prehension of the distinction between interrupts originating
in other processors (e.g., I/0 interrupts) and traps or faults
originating in the processor itself (e.g., invalid instructions).

0.3 Memory Organization

The student should be familiar with the common memory
types (integrated circuit, core, mass or bulk core, disk, etc.)
and appreciate relative costs, capacities, and access times
[40, Hellerman, Secs. 3.1-3.2], [33, Gear, Secs. 6.1-6.4],
[5, Bell] and [75, Sharpe] . He should understand the dis-
tinction between sequential access and random access devices,
especially in terms of latency time characteristics. He should
understand the properties of associative memory.

The student should understand that a channel is a special-
purpose processor, and how communications between cen-
tral processors and channels are effected. [40, Heilerman,
Sec. 8.13] , [33, Gear, Sec. 6.5] , and [5, Bell] .

0.4 Data Structures

The student must understEnd the most common types of
data structures and their representations using both sequen-

and linked allocation; these include stacks, queues and
arrays [50, Knuth] . He should be familiar also with hash
tables [63, Morris] .

Module 0: Background Topic Outline

0.1 Programming Languages

Working knowledge of symbolic progamming features
Dafta types
Variables
Expressions
Procedure application

Formal parameters
Actual parameters
Recursive procudures

Machine language representation of source
language statements

Simplified program "history"
Assembly or compilation
Loading
Execution

0.2 Processor Organization

Machine language concepts
Relationships of processor features to

programming language features
Implicit control
Data movement
Data transformation
Program control
Addressing

index registers
indirect addressing

0.3 Memory Organization

Hierarchy of memory typescore, drum, disk, tape
and other mass media

cost
capacity
access times

Concepts of random access, direct access and
sequential access devices

Associative memories
I/0 control, channels, CPU communication

0.4
1/4,

Data Structures

Stacks, queues, arrays
Sequential allocation'
Linked allocation

Hash tables

www.manaraa.com

Module 0: Background Reference List Guide

types. C conceptual, D descriptive, E example,
T tutorial

level: S student, A advanced student,
I instructor

Key Author Type Level

5 BeM and Newell T
33 Gear
40 Hellerman
50 Knuth
63 Morris
75 Sharpe

A

Importance

2
1

1

2

www.manaraa.com

MODULE 1 INTRODUCTION

1.1 Forms of Systems

Already, most students will have heard of systems which
use operating system techniques extensively. These include:
1) real-time control systems: reservations, telephone switch-
ing, process control; 2) data base systems: management in-
formation, credit reporting; 3) general purpose programming
systems: batch, multi-programming, time-sharing; and 4)
computer networks.

By considering characteristics these systems have in com-
mon, and issues which arise over and over again in designing
or understanding them, this module provides an overview of
the course. The common characteristics and issues may be
uscd as touchstones tly which to motivate, and against which
to judge, the ideas and techniques forming the body of the
course.

1.2. Views of a System

Almost as varied as the types of systems are the views
programrhers and designers hold of them. These views in-
clude: 1) The system defines an extended language .2) rhe
system defines an extended machine, e.g., a "virtual ma-
chine." 3) The system creates an environment fur efficient
program execution. 4) The system is an information man-
agement system. The instructor can find many other exam-
ples of viewpoints as he peruses the literature. Despite the
wide variation in types of systems and views about them,
they have an important and extensive set of common char-
acteristics. These are discussed next.

1.3. Common Characteristics

The four types of systems listed above all employ some
form of concurrency; for example, many reservation agents
may be engaged in transactions at one time, many sub-
systems of a chemical plant must be controlled, printing
and computing are overlapped in a simple batch-processing
system, input-output for many jobs is processed concur-
rently in a multiprogramming system. In some cases the
concurrent activities are almost independent (as in multi-
programming), in others they are related through a shared
data base (reservations), in still others there are more com-
plex interactions (input-output overlap in a single job, chem-
ical processes). When the activities are independent, concur-
rency is the concern of the underlying system; as they
become more closely related, explicit recognition of the
concurrency must appear in their implementation. There
are no clear dividing lines, and methods for handling con-
currency must be available to both system and users.

Closely related to concurreney is sharing of information.
Examples of information shared among many users include:
a FORTRAN compiler, the records of a reservation or credit
-reporting system, a table of stock prices accessed by security
analysts in a time-sharing system, or channel comrnands and
status information shared between an input-output channel
and a central processor. Sharing begets unique problems,
the most important one being that concurrent attempts to
access and modify data can lead to races or to use of data
while it is in an inconsistent state.

Closely related to sharing Is long-term storage of data in
a computer system. In fact, all the examples of sharing c:ted
above (except the last) are also examples of long-term storage.
Three inajor problems must be solved in an implementation
of long-term storage: 1) Maintaining records of the location
of data, and communicating location-information to all
users (file systems and naming). 2) Controlling access to
data (privacy and protection). 2) guaranteeing survival of
the data despite system failures (reliability).

A property resulting from concurrency and data yoragc
is nondeterrninacy. On the one hand, a batch-processing sys-
tem for FORTRAN program ;or should be) determinate
in the sense that it will give the same results every time it is
run with the same inputs. On the other hand, a transaction
with a reservation system is nondeterminate, since it may be
in a race with another transaction for ihe last available
space, and since its effect may depend on the state of the
data base.

Sharing of resources, contrast,:o with sharing of informa-
tion, is another important characteristic of most computer
systems. Multiprogramming systems shale memory, time
sharing systems share the central processor, all systems
share channels and disk storage. This kind of sharing is
motivated by eednomics, i.e.,-the desire to reduce costs by
sharing equipment. It raises special problems in protection
and resource allocation.

Many systems employ various types of modularity in their
design and operation. Here, modularity means the ability to
construct complex systems from separately designed parh7..1
It appears irs several forms, particularly programming modu-
larity and operating system functional modularity.

A final, very important characteristic of many real time,
data base, and general purpose systemsand of all computer
networksis remote conversational access. Conversation
requires a system to respond promptly and to switch (multi-
plex) its attention among users at a high rate, i.e., support a
high degree of concurrency. Remote access requires it to
intertace with the telephone system and to handle lar,
numbers of slow terminals.

1.4. Major Issues

The following list of words suggests some important
concerns which intersect all the functional divisions of
section 1.1;

generality
reliability
efficiency
complexity
compatibility

Except for generality, unfortunately, these are issues whose
importance is not yet supported by any useful conceptual
framework. As a result, we have relegated them to an inferior
position at the end of the course; we emphasize that this
relegation reflects the absence of teachable material and not
the importance of the iSSues. A few general remarks about
these issues are included below.

6 9

www.manaraa.com

Generality escapes the observations of the preceding
paragraph at least to some extent. Indeed, all the anstrac=
bons in the body of the course can be viewed as attempts
to increase the generality of the basic mechanisms in oper-
ating systems and thus to give them wider applicability, both
as aids to understanding and as tools for programming.

Reliability can be considered under several headings: 11
Coping with nardware unreliability, by reconfiguration and
recovery from detected failures such as parity errors. 2) Mak-
ing programs reliable by making their structure and inter-
faces very clear, or by proving their correctness. 3) Dealing
with software errors by redundancy and recovery. Some
evmples of redundancy should be mentioned, e.g. the use
of doubly linked lists or of 'headars' or 'home addresses' on
disk :;:ords. The idea of a recovery procedure may also be
clarified by an example, such as a disk file backup and
reloading system.

Efficiency is partly a matter implementation detail;
as such, it should be brought oui: in the study of the example
system. It is, however, far more a matter of conceptual orga-
nization and algorithms design. A significant reason for this
(though by no means the only one) is the reduction in sys-
tem size and overhead which results from good design.

Complexity is the enemy of reliability, and often of
efficiency and generality as well. It is an inescapable aspect
of, and indeed often the reason for, using computers. One
interpretation of the purpose of this course is a description
of tools for structuring complex processes in comprehensible
ways.

A casual perusal of the trade literature will reveal the
concern of both manufacturers and users with compatability.

Module 1: Introduction Topic Outline

1.1. Forms of computer system (software/hardware
composites)

Real time control systems
Data base systems
General purpose programming systems
Computer networks and utilities

1.2. Views of system

Defining an extended language or virtual machine
Establishing an environment for program execution
Information management system

1.3. Common characteristics

Coneurrency
Sharing
Nondeterminate long term storage (data bases)
Modularity
Conversational remote access

1.4. Issues

Reliability
Generality
Efficiency
Complexity
Compatibility

to

Module 1: Introduction Reference List Guide

types: C conceptual, D descriptive, E example,

T tutorial
level: S student, A advanced student,

I instructor

ILey Author,
13 Corbato and Vyssotsky
14 Crisman
30 Fano and Corbatd
39 Parkhill
75 Sharpe
85 Wilkes (Ctrs 1,21

Type Level Importance
A 2

3
1

A 2
3

www.manaraa.com

MODULE 2 PROCEDURE IMPLEMENTATION

A theme which reappears throughout the course is: a
primary purpose of an operating system is providing an ef-
ficient and convenient environment for executing programs.
This module examines this view in some detail. The most
fundamental aspects of procedure implementation are dis-
cussed here. Further aspects affecting the convenience with
which program .1odules can be combined are treated in
Module 5.

2.1 Abstract Model of a Procedure

A "procedure in execution" consists of: 1) instruction
code representing an algorithm, 2) an activation record de-
fining the local environment of the procedure, and 3) the
nonlocal environment of the procedure. The total environ-
ment of a given procedure comprises the data structures and
procedures that are currently accessible to the given proce-
dure. The local environment of a given procedure comprises
the local working storage for the current activation of the
procedure. The -activation record," which is created as part
of the procedure activation, will in general contain the local
workicio storage, the values or addresses of actual parameters,
the return ;.-ddress, and pointeis to the remainder of the
environment. :t is important to note that the total environ-
ment is determined by the context in which the procedure
is activated. Since a procedure may be activated at different
points in a computation, the local and non-local environ-
ments will in general be different for each activation.

There are three basic problems that an implementation
of procedures must solve. First there must be a mechanism
for referencing the non-local environment, i.e. non-local
variables and other procedures. Second, there must be a
mechanism for activating a procedure, incorporating a way
of naming the procedure to be activated, constructing its
activation record, and transferring control. Third, there must
be a mechanism for passing of parameters to the activated
procedure.

The conceptual model described above should be illus-
trated by implementations found in practice. These can be
taken from common programming languages familiar to the
students. FORTRAN and ALGOL are used as examples in
the next two sections.

2.2 Example Implementation FORTRAN

The definition of the FORTRAN programming language
gives rise to an especially simple run-time environment [77,
Standards] . A FORTRAN program consists of a set of one
or more disjoint procedures (subroutines). The non-local
environment of each procedure consists of the other proce-
dures and the variables in COMMON. Since the addresses
of procedure entry points and COMMON variables are known
by load time, references and linkages to these items can be
resolved at this time before execution begins. Since FORTRAN
Ofohibits recursive activations of procedures, the local stor-
age of a procedure is permanently allocated and the same
locations used for each activation.

Parameters are passed only by reference (i.e. addresses
of parameter storage locations are passed). A common tech-

nique is to store the addresses of parameters in the succes-
sive storage locations immediately following the subroutine
call instruction. Since the subroutine call instruction places
in the subroutine's return address cell 1 plus its own address,
the subroutine can locate its parameters by interpreting the
contents of the return address cell as a pointer to the list of
parameter addresses. The usual convention for returning
control is to execute a jump to the first location following
the parameter list. A discussion of the implementation of
FORTRAN subroutines can be found in [33,Gearl .

After having presented the call, return, and parameter-
passing mechanisms of FORTRAN, the instructor should
review the operation of linking loaders, which combine
independently compiled subroutines into a program 159,
McCarthy] .

2.3 Example Implementation ALGOL

To complete the discussion, the instructor should present
an implementation of procedures which involves recursion,
and the associated dynamic storage akocation of space for
activation records. For this purpose it is sufficient to cor,
sider a subset of ALGOL in which the passed parameters
are simple variables and the only external names which a
procedure may use are those of other procedures. [67,
Naur, et all A review of the nested declaration structure of
ALGOL and the scope rules for identifiers should be given.

Since ALGOL permits the recursive use of a procedure,
an implementation must permit two cr more activations of
the same procedure to exist simultaneously. This implies that
each activation of the procedure be provided with a distinct
activation record. The nesting of procedure activations in
ALGOL makes the use of a stack convenient for this pur-
pose. Each activation record will consist of the return ad-
dress, actual parameter information, a pointer to the current
activation record of the calling procedure, and the local stor-
age for the activated procedure. The first three items can be
set up by the calling procedure; the fourth can be done upon
entry to the activated procedure so that a variable amount of
storage can be allocated (e.g., local arrays can be of variable
size). The actual transfer of control is simply a jump to the
first location (entry point) in the fixed-program part of the
activated procedure. As in FORTRAN, entry points of pro-
cedures will be known at load time. The location of the acti-
vation record of the currently executing procedure resides
in a system base register or index register, and all local data
references are taken relative to the contents of this register.

Parameters (which we have limited to simple variables)
can be passed by name or by value. If a parameter is passed
by name it is to be evaluated each time it is used in the pro-
cedure, this evaluation being performed in the environment
of the calling procedure. In the restricted situation described
here, the parameter is a variable in the local data area of the
calling procedure; accordingly, a name parameter can be spec-
ified by its local address within the activation record of the
calling procedure. If the parameter is passed by value, the
value of that parameter is copied into the activation record.
Returning control to the calling procedure consists of delet-

8 11

www.manaraa.com

ing the activation record from the stack and executing a
jump to the return address.

At his option, the instructor may extend the discussion to
include the ALGOL facility for referencing arbitrary non-
local names (not just procedure names). To do so, he will
have to introduce the concept of a -static chain" of activa-
tion records. The successive entries in this chain are the lexi-
cographically enclosing blocks in the ALGOL declaration.
(This is contrasted with the dynamic chain," whose succes-
sive entries are the activation records in order of activation;
the chains may be different, for example, when recursive
procedure calls have been made.) A static chain is unneces-
sary if the only non-local names are external procedure
names because entry points are known prior to execution;
but the addresses of data items within activation records are
not known prior to execution.

Comprehensive treatments of ALGOL implementation
can be found in [71, Randell] and [81, Wegner] . Procedure
implementations are covered more generally in [25, Dennis].

Module 2: Procedure Implementation
Topic Outline

2.1. Basic Concepts

Pure procedure
Procedure activations, activation records
Parameters; formal and actual, value and name
Environment, local and total
Local and non-local references

2.2. FORTRAN Implementation

Memory arrangement for nonrceursive procedures
Transfer and return of control
Passing parameters by reference

External references, common locations
Design and operation of linking subprogram loader

2.3. ALGOL Implementation

Block structure, scope of names
Recursive procedures, activation record stack
Passing parameters
Static and dynamic chains

--Jule 2: Procedure Implementation
11eference List Guide

types: C conceptual, D descriptive, E example,
T tutorial

level: S student, A advanced student,
I instructor

Key Author Type Level Importance

25 Dennis et al. CT i 1

33 Gear T i 1

59 McCarthy CT 1 2

67 Naur et al. D I 3

71 Randell and Russell DT I 2

77 Standards (ASA) D I 3

81 Wegner T A 1

www.manaraa.com

MODULE 3 PROCESSES

The study of operating systems adds another dimension
to the design of computer programs, in the form of "concur-

programming." It is desirable to add this dimension for
at least two reasons:

1. the demand for a short response time which can be
met by means of various form:, of multiprogramming
and multiprocessing;

2. efficient utilization of equipment, which can be realized
by means of concurrent activity hetween the central
machine and its peripheral devices.

Although present hardware technology makes concurrent
activity fearible, it is the task of the operating system de-
signer to write the programs that will effect it. This task se
arates quite naturally into two parts: writing the programs
for each of the individual activities, and designing the inter-
actions between them. A method for dealing with these two
aspects, which has proved effective, is to build a system as a
set of sequential processes that interact at well-defined events
(see for instance descriptions of MULTICS [13, Corbatd] ,
THE [28, Dijkstra] RC4000 [36, Hansen]). Instead of re-
stricting it to be associated with a hardware processor, a proc-
ess should be regarded as an activity that executes one of the
system functions, an activity which the designer wishes to be
pei formed conceptually in parallel with other activities.
Taking this point of view, a hardware processor is considered
as a resource which is needed by a process to carry its activity
forward in real time and which could be shared among proc-
esses. "Parallel activity" is then interpreted in the following
sense: when a snapshot is taken of the system, several proc-
esses may be found somewhere between their starting point
and their points of completion.

The foregoing outlines the motivation for studying parallel
process as part of operating systems. The previous modules
have provided the ingredients for starting a study of oper-
ating systems; the treatment of concurrent programming is
the beginning of the study proper. The remainder of this
module concentrates on the interaction of processes and the
tools that enable parallel processes to share information.
Appendix M3-B contains problems of the type often
encountered in concurrent programming.

3.1 Parallelism in an Operating Syste

Almost independent processes operating in parallel exist
already in the given hardware consisting of a central machine
and its peripheral devises. Processes designed in software
should also be considered as almost independent and nothing
should be assumed about their relative speeds (see the lecture
notes [27, Dijkstra]).

At his option, the instructor should devote some attention
to an abstract description of a process as a set of histories, in
which a history is a 3equence of states Si = (P1,M1) comprising
a processor state Pi and a memory state fñ (see the lecture
notes [25, Dennis, chapter 7]). In terms of an abstract de-
scription the major issues of concurrent programming (corn-
mon state variables, mutual exclusion, abstraction, non-
deterministic processes, synchronization and deadlocks)

can be elucidated (a detailed treatment is found in [41,
Horning]).

The instructor should conclude this preliminary discussion
by exhibiting some examples in which the problems mentioned
show up in existing systems. If he has some experience with
operating system design he certainly will know several exam-
ples of synchronization or deadlock problems.

3.2 Mutual Exclusior,

Whenever two or more processes may access commor in-
formation cells, some restrictions must be imposed on their
access to such cells, for otherwise misrepresentation of infor-
mation may result. The requirement tnat at most one process
may be using a common cell at any given time is known as
mutual exclusion. Implementing it requires "primitive oper-
ations" on data, where primitive means that an operation can-
not be interrupted by any other operation on this data. An
instructive siert in writing concurrent programs is to take
-copy a value of a variable" as primitive operation [26,
Dijkstra] . The student will find out that th i s primitive, though
rather clumsy, is sufficient to solve the mutual exclusion
problem. Since this solution uses the busy form of waiting,
there is a motive for looking for a better set of primitives.
The primitives LOCK, UNLOCK and P and V operation (with
the counting semaphore) should be discussed in this light; see
the appendix in [28, Dijkstraj . Other forms of the same
primitives should be identified, e.g. [73, Seltzer] and [86,
Wirth] . Some attention should be given to implementing
primitives, see Appendix M3-A and [86, Wirth] . Finally, it
should be pointed out that application of these primitives
may prove very unfair for some of the blocked processes
unless certain priority rules are implemented, implicitly
or explicitly; see Appendix M3-B(4),

3.3 Synchronization

This subject should he introduced in relation with the co-
operation of processes sharing the system facilities. The co-
operation implies that a process should not continue at certain
points of its program until certain information is supplied by
another process; moreover, the correct operation of the sys-
tem usually requires that processes ought always to sr.. ply
that information without which others cannot proceed. Al-
though considered as asynchronous, processes should be syn-
chronized up to such an extent that the two conditions, -the
necessary information becoming available- and the contin-
uation of a process dependent upon that information," are
ordered in time. In this sense the solution of the mutual
exclusion problem is an example of synchronization, accord-
ing to which one process requires outside information and
other processes supply this information. If a given process
discovers that the required information is not yet available
when needed, that one process will block itself and it is the
task of the others to wake it up when the required informa-
tion becomes available. The primitives to be discussed here
are the pairs of operations (BLOCK, WAKEUP) and (P, V).
The occurrence of race conditions and the solution that uses

3

www.manaraa.com

the "wake-up-waiting switch" deserve special attention (see
the discussion on the wake-up=waiting switch [72, Seltzer])
This topic lends itself to further exercises in concurrent pro-
gramming. With regard to avoiding a fixed selection scheme
in a V-operation the concept of the private semaphore, i.e.,
one which can cause the stopping of only one given process,
should be discussed [27, Dijkstral .

3.4 Process Communication

A discussion of the relation of a Sender and a Receiver
communicating via a message buffer is a natural continuation
of the previous section. Updating the status variables of the
buffer requires mutually exclusive access and the states
"buffer empty" and "buffer full" require synchronization of
Sender and Receiver [27, iDijkstra].

An immediate extension to the above allows m Senders
and n Receivers (m 7-17, 1, n =I'll) to communicate via a me:;-
sage buffe: ; see [27, Dijkstra] and the Mailbox description
[75, Spier]. A further extension allows Receivers to inspect
the buffer for a messaae of highest priority instead of treating
them in a strict first-in-first-out order. At this stPge considera-
tions of implementation must be taken into account. (See
Appendix M3-A.) It should not be possible, for instance, that
a subset of Senders monopolizes the buffer so that others
will never get a chance to deposit a message. Moreover, when
a message has been placed in the buffer, its Sender should be
able to detect that it has been accepted properly. The RC4000
is a sy.- m having these facilities [37, Hansen] These consid-
erations show that the primitives are adequate tools, but not
more than that, it being still the designer's task to effect the
correct cooperation of processes.

3.5 Switching Control

The object of this section is discussing how a set of co-
operating processes can be implemented on present day
computers. The instructor should begin by considering the
various implementations of hardware interrupts, by means of
which peripheral devices interact with the central machine
If material is available, it is recommended that some atten-
tion is paid to queueing of channel commands and interrupt
vectors [IBM/360, B6500, PDP-11] .

When a process is interrupted, the status of this process
should be stored in a control stack (or block) in order to
make possible the subsequent resumption of this process. A
good description is found in [36, Hansen] . When a central
processor becomes available it is usually allocated to the
highest priority process in the set of "unblocked" processes.
(Note the distinction between "blocked- and "inactive.")
The instructor could at this point introduce briefly the topic
of processor scheduling, which is treated in detail in Module 7.

The primitive operations (P, V, LOCK, UNLOCK,
BLOCK, WAKEUP) each require an implementation of a
non-interruptable sequence of machine instructions, which
can be achieved by masking off the interrupts. Booking a
process in a waiting list and selecting a waiting process to
wake up are part of the primitives; they should be imple-
mented in a very simple form in order to minimize the exe-
cution time of the non-interruptable code. There have been
several proposals for, and implementations of, less primitive

operations than the ones mentioned above; examples are
found in [7, Bernsiei-1 and [8, Betournel

3.6 System Deadlocks

The discussion of deadlocks is in fact a continuation of the
mutual exclusion and synchronization discussions, where it
was stated that a process may have to wait until certain infor-
mation becomes available. The system has maneuvered itself
in a deadlock situation if none of the processes is goina to
provide the necessary information. It should be pointed out
that a deadlock is caused by a conjunction of circumstances
rather than by programming errors in the processes. Examples
demonstrating this point are: circular waits, infinite repeti-
tion of regt.- st, two processes each holding half of a pair and
asking ror the other half.

The solutions of the deadlock problem should be class-
ified in two kinds: 1) prevent its occurrence; 2) resolve the
deadlock situation when it occurs. The first type of solution
requires some knowledge in advance about the minimal
needs of a process, but has the advantage that it does not
restrict the number of working processes unnecessarily. Such
a policy has been described in [35, Hahermann] . The second
type of solution does not demand an', information about
future behavior, but requires that preeemption of resources
or killing a process be allowed. An example of such a policy
is [64, Murphy] . A good overall view is found in [11,
Coffman] .

At his option, the instructor may extend the discussions
of this module by including a discussion of the overall struc-
ture of Operating Systems.

The ring structure of MULTICS [34, Graham] and the
hierarchical level structure of the THE system [28, Dijkstra]
define certain dominance relations between processes. Other
hierarchical structures of processes are discussed in [24,
Dennis & Van Horn] . OS/360 and the RC4000 system have
these relations in the form of "parent-offspring." A well-
considered structured set of dominance relations facilitates
the designer to check the correctness of his design and allows
him to apply the rule of "divide et impera" to it.

Module 3: Processes Topic Outline

3.1 Parallelism in an Operating System

Motivation of concurrent programming
Motivation of asynchronous processes
Abstract description of process
Various aspects of process interaction

31 Mutual exclusion

The problem of accessing shared data
Critical sections and busy form of waiting
Lock and unlock primitives; P and V operations

Synchronization

Synchronization of events
Block and wake up; the wake-up-waiting switch
P and V operations used as synchronization primitives

www.manaraa.com

3.4. Process communication

Sender-receiver relation
Generalization of sender-receiver concept
So- implementation aspects

3.5. Switching control

Hardware interrupt mechanisms
Pi-oces3 status and contra block
Implementation of prim Ives

3.6. System deadlocks

General statement of the problem
How to resolve or prevent deadlocks
Dominance relations

Module 3: Processes -- Reference List Guide

types:

level:

Key
7

C conceptual
T tutorial
S student, A
I instructor

Author

D descriptive, E ex mple,

advanced student,

pe Level Importance
Bernstein et al.
Betourne et al.

4
3

11 Coffman et al, A 2
13 Corbat6 and Vyssotsky 3

24 Dennis and Van Horn 3

25 Dennis et al. 2

26 Dijkstra A 3

27 Dijkstra A 1

28 Dijkstra A 2

34 Graham 4
35 Habermann A 3

36 Hansen 2

37 Hansen 3
41 Horning and R andel! 4

49 Knuth A 4

64 Murphy A 4

72 Saltzer 2

76 Spier and Organick a
86 Wirth 3

APPENDIX M3-A IMPLEMENTATION AND
APPLICATION OF P AND V
OPERATIONS

P and V operate on objects of type "semaphore." This type
designates a data structure which is a pair (s, 0) in which s is
counter variable and 0 a set of "waiting processes." The con-
ceptual difference of the P operation and other instructions
in sequential processes is the fact that it may delay the exe-
cution of the next instruction. The operations of P and V
are:

P (sem): decrement the counter sem and, if the result is
negative, book the executing process on the waiting list 0
and enter the wait state.

V (sem): increment the counter sem and, if the result is
still not positive, select a process from the waiting list 0,
remove it from 0, and release it from its wait state.

The P and V operations on a semaphore are "primitive
in the sense that their execution is uninterruptable by other
P or V operations on that semaphore. Hazardous race condi-
tions could arise if P and V operations could be broken apart

in more primitive instructions, which could be executed in
an arbitrary order by several processes. If, for instance, decre-
menting the semaphore is separated from the negative value
test, two processes could find sem> when sem 1 and

both would decrement sem, which wouid obviously have an
undesired effect.

A reasonable implementation of P and V operations requires
that, when it enters the wait state, a process releases resources
that can be used effectively elsewhere. In particular, in a
multiprogramming system, the central processor should be
released by a process that enters its wait state through a P
operation. Hence, a realistic implementation has this structure:

P (sem) executed by process Y:
[sem : = sem-1;
if sem< 0
then begin mark Y not ready;

add Y to 0sem,:
go to RELEASE PROCESSOR;

end)

V (sem): [sem : - sem+1;
if sem <0
then begin X : selection from Osem;

remove X from °sem;
mark X ready to run;

end]

The brackets indicate that the enclosed actions are primi-
tive (in order to avoid race conditions). On a machine with
an interrupt system the P and V operations should be imple-
mented as subroutines which are executed with all interrupts
maSked off (e.g., on an IBM/360 as SVC calls).

One can argue that the processor allocation, or the priori-
ties of processes awaiting assignment to a processor, should
be reconsidered when a v operation removes a process from
a waiting list 0sem, because indeed the set of processes ready
to run is being expanded. In a system with only one central
processor, however, it is not necessary to do so because the
process that executed the V operation is sti II able to use the
central processor effectively. The implementation allows a
specific interpretation of the semaphore value: if positive, it
indicates how many times a P operation will not cause a delay,
whereas, if negative, it indicates the number of processes on
the waiting list of this semaphore.

A hardware interrupt system is an implementation of P
and V operations. Each interrupt handler routine can be
regarded as a process which has performed a P operation
when it enables the interrupt for which it is going to wait.

Although the corresponding V operation is in fact per-
formed by the interrupt dispatching mechanism, one may
regard the peripheral device or process that caused the inter
rupt as being the source of the V operation. In some imple-
mentations the occurrence of the V operation merely causes
the appropriate interrupt handler process to be added to the
queue of work for the central processor, the processor on
which the interrupt occurred remaining under control of the
process that was interrupted (MU LTICS, THE). In other im-
plementations the effect is an immediate allocation of the
processor to the waiting process (TSS/360, PDP-10 Monitor);

www.manaraa.com

this is necessary in these systems in order to run the devices
at maximum speed, because new commands may be presented
to the devices only after an interrupt.

The interrupt mechanism is a more restrictive form of P
and V operation, because it relies on the fact that ()sem
never contains more than one process, and moreover the id-?.n-
tity of this process is associated uniquely with the particular
semaphore (the interrupt bit). Therefore the interrupt dis-
patching mechanism can locate the waiting interrupt handler
process simply by finding out what caused the interrupt.

The general structure of processes communicating via a
communicating chaf ,iel provides an excellent example of the
application of P and V operations. A certain channel has a
capacity of C messages. Senders Si deposit messages and re-
ceivers Pi accept them. -Accept" and "deposit" are opera-
tions on the channel, each of which implies a sequence of
operations on the channel status variables, of which the
number of messages M and the number of empty slots E. In
order to be abld to interpret the channel status unambig-
uously at all times, accept and deposit should not be exe-
cuted simultaneously. This is achieved by introducing a sem-
aphore murex, which has the initial value 1 and is used to
realize tile mutual exclusion of accept and deposit. Further-
more, Senders and Receivers should be synchronized with
respect to the conditions "channel empty" and "channel
full." When the channel is empty, the Receivers are to be
blocked from attempting to accept messages and it is the
Senders' obligation to notify the Receivers when a message
is placed. Similarly, the Senders must be blocked from at-
tempting to deposit messages when the channel is full and
they should be notified when again there is an empty slot
available.

The synchronization can be achieved by making M and E
counting semaphores with initial value 0 and C respectively,
and programming Senders and Receivers as follows:
Si: begin

prepare message;

P(E);
P(nutex);
deposit
V(mutex);
V(M);
go to Si

- begin
P(M);
P(rnutex);
accept;
V(mutex);
V (E);
process message

go to H-i
end end

It is essential that the operations P(E) and P(M) are not exe-
cuted between P(mutex) and V(mutex), whereas the order of
the V operations could be reversed.

APPENDIX M3-B SOME EXAMPLES OF
EXERCISES IN CONCURRENT
PROGRAMMING

1) Two cyclic sequential processes A and B intend occasion-
ally to execute a "critical section" in their programs. A section
of program is called "critical- because there is a requirement
that one of them s allowed to enter its critical section only
if the other is not passing its critical section at the same time;
in other words, the critical sections must be mutually ex-
cluded. Program prologues and epilogues of the critical sec-

13

tions in A and B assuming that "copy the value of variable''
is the only uninterruptable action. 126, Dijkstral , [27,
Dijkstrai

2) Extend problem 1 to n processes Ai, . 140, where

n > 3.

3) Sleeping Barber [27, Dijkstra,]
A certain Barbershop consists of two rooms: the waiting
room W and the room B containing the barber chairs. The
shop is so constructed that a ding door 0 allows access either
between W and B, or else betwc;n W and the street. Thus
allows either the barber to inspect the waiting room W or it
allows a customer to come in from the street, but not both.
If the barber inspects W and finds nobody there, he will
return to B and fall asleep; otherwise he will invite the neAt
customer to get his hair cut. If a customer enters the barber-
shop and he finds the barber asleep, he should wake up the
barber. Program the barber and the customers using P and V
operations.

4) If there is no restriction on how many rii-,amers may
enter the waiting room, and if it is not known in which order
the V operation is going to wake up the waiting processes,
the customers of the previous problem could lock out the
barber completely by denying him access to the door indefi-
nitely. Modify the solution of the previous problem so that
the barber cannot be locked out.

5) An Operating System contains a process C which Commands
a line printer device Lri, and a process P which deletes the
line printer commands after completion. The processes and
line printer LP communicate via an interrupt system with
the following data structure:

an "activation bit" A;
a (hardware) semaphore I,-
a "switch bit" S and
two command buffers [0] and BM] .

Printer LP operates according to this algorithm:
LP: if A = 0 then go to LP else A - 0;

execute B[S] ;

go to LP;

a. The first line is a P operation on the activation bit A.
What is the body of the corresponding V operation
(which ought to be performed by process C)?

b. Design programs for C and P (using additional vari-
ables and semaphores if necessary) such that the
dual buffer system is utilized in the sense that LP may
execute a command in one buffer while the other
buffer is used to place or delete a command. Specify
the initial values of the variables and semaphores
assuming that the system starts with both the buffers
being empty.

c. Try to combine C and P in one sequential program.
Would it be more efficient to have one instead of
two processes?

www.manaraa.com

MODULE 4 - MEMORY MANAGEMENT

4.1 Introduction.

The study of modern memory systems concerns two dis-
tinct problems: 1) The set of techniques arising from our
having to use two or more levels of memory in computer
systems. These techniques encompass those of the "one-
level store" or virtual memory. 2) Tne means of achieving
systems supporting very general forms of modular program-
gramming; these include methods for dealing with objects
whose size or structure may vary, and those allowing efficient
shar:ng of procedure and data information among many proc-
esses. These methods involve enlarging the set of names (ad-
dress space) within which a process may attempt to access
procedure and data objects, either by a storage system sep-
arate from address space or by a structured address spa,-..e.
Although the second of these two aspects is the subject of
Module 5, it is not completely independent of the first,
which is the subject of Module 4.

4.2 Abstractions: Spaces and Mappings.

Most of the modern solutions to the automatic storage
allocation problem derive from the one-level store introduced
on the Atlas computer [47, Kilburn et al] . This machine dis-
tinguished "address" from "location,- an address being the
name for a word of information and a location being a physi-
cal site in which to store information. The set of all addresses
(program addresses) a process can generate as it references
information has come to be known as the address space of
the process, and the set of all physical main memory location
names (hardware addresses) has come to be known as mem-
ory space. By making this distinction, one is able to remove
considerations of main memory management from the task of
constructing a program, for the address space can be
associated permanently with a program and can be made
independent of assumptions about memory space. The
memory management problem becomes the system's prob-
lem as it translates program addresses into location addresses
during execution,

4.3. Motivation.

Computers have always included several distinct types of
storage media, and the memory has been organized into at
least two levels: main (directly addressable) memory and
auxiliary (backup) memory. The desire for large amounts of
storage has always forced a compromise between the quan-
tity of (fast, expensive) main memory and (slow, cheap)
auxiliary memory. The one-level store implements what
appears to the programmer to be a very large main memory
without a backing store. There are two ways of motivating
it. The first starts from the idea of implementing a large,
programmable virtual (simulated) memory on a machine
having a relatively smaller main memory. The second traces
the possible times at which program identifiers are "bound"
to (associated with) physical locations. See [21, Denning,
PP 143-157] , 185, Wilkes, Ch 41 .

The argument according to large vii tual memory proceeds
as follows. In the original stored program computers, main
memory was quite small by today's standards; thus all pro-
gramming was carried out in machine code and a large frac-
tion of program development was devoted to the overlay
problem, viz., deciding how and when to ri.Dve information
betvveen main and auxiliary memory and inserting appro-
pi iate commands to do so into the program. When large
(magnetic core) memories were introduced, pressure to solve
the overlay problem was relieved. Thisi. ite was short-lived,
however, for the introduction of algebraic source languages
(e.g., FORTRAN and ALGOL) and the linking loader made
it possible to construct large programs with relative ease.
The resulting strain on main memory resources was aggravated
because all the information involved in the execution of a
computation was kept in main memory even though much of
it remained unreferenced most of the time. Thus the need
for executing large programs in srnall main memory spaces
motivated hardware and software mechanisms that automati-
cally moved information between main memory and auxiliary
memory.

The argument according to binding time postponement
proceeds as follows. There are five binding times of interest.
1) If the program is specified in machine language, addresses
in it are bound to storage locations from the time the pro-
gram is written. 2) If the program is specified in a high-level
language, program identifiers are bound to storage locations
by the compiler. 3) If the program is specified as a collection
of subroutines, program identifiers are bound to storage loca-
tions by '0, !oader. In 1-3, binding is permanent, once per-
formed. It r .lowever, be also dynamic. 4) Storage is allo-
cated (deallor '+ to named objects on demand, such as at
procedure ar: i (deactivation) time in ALGOL, and upon
data strucl , (destruction) in LISP or PL/I. 5) Stor-
age is allocated automb -ally by memory management hard-
ware and software provic U by the computer system itself.
The sequence 1 through 5 is .n fact the historical evolution of
solutions to the storage alio(tion problem. It is characterized
by postponement of binding. Although postponing binding
time increases the cost of implementation, it also increases
freedom and flex(bility in e'locating resources.

The two preceding paragraphs outline an approach by
which the instructor can familiarize his students with the
motivations, both qualitative and quantitative, for automatic
storage allocation. Detailed accounts of the qualitative jus:i-
fications can be found in [18, Denning], [21, Denning], [22,
Dennis], and [70, Randell & Kuehner] . For quantitative
justification, we recommend: 1) discussing Sayre's paper,
which reports on comparisons between automatic and man-
ual (programmer-controlled) storage allocation procedures
[74, Sayre] , also [21, Denning, pp 159-161] . and 2)
assigning homework problems in which the student is asked
to program with overlays devised by himself. An excellent
example is a set of programs for multiplying two nxn matrices
v../hen main memory contains 3n2 n2, and n data locations.

www.manaraa.com

However one arrives at the conclusion that some form of
dynamic storage allocation is required, one must also con-
clude that the programmer cannot handle it adequately him-
self: 1) he is not privy to enough information about machine
operation to make allocation decisions efficiently, 2) solving
the overlay problem at the programming level requires exten-
sive outlays of a programmer's time, and the results are not
consistently rewarding.

It is important to emphasize that there is a distinction be-
tween the mechanisms rid the policies of storage manage-
ment. T' e mechanisms are on a low level of abstraction in
that they deal directly with the hardware features of the
system, whereas the policies are on a higher level in that no
detailed knowledge of machine organization is necessary or
even relevant. The properties of one-level storage mechanisms
are discussed in Sections 4.4-4.6, the policies in Section 4.7.

Examples of one-level store in contemporary systems are
given in [6, Bensoussan et al] , [70, Randall ee Kuehner] .

4.4 Formalization.

It is essential to study memory systems by means of the
abstractions address space, memory space, and address map,
and to emphasize them over and over. They are easy to grasp,
and a student will he unable to comprehend the seemingly
endless variety of existing memory systems unless he can be
shown a pattern. As suggested earlier, memory management
problems can be studied in terms of a mapping

f: N M
where N is the address space of a given program, M is the
main memc-y space of the system, and f is the address map.
If the word with program address x is stored at location y,
then f(x) y. If x is in auxiliary memory but not in main
memory, f(x) is undefined, and an attempt to reference such
an x creates a fault condition which causes the system to in-
terrupt the program's execution until x can be placed in rnem-
ory and f updated. The physical interpretation of f is that a

mapping mechanism" is interposed between the processor
and memory to translate process generated addresses (in N)
into location addresses (in M). This reflects our earlier re-
quirement that the address space N be independent of prior
assumptions about M: since the programmer is aware only of
N but not the two levels of memory, his program can gen-
erate addresses from N only.

4.5 Properties of One-Level Store.
The following paragraphs sumrnarize six important prop-

erties of systems providing virtual memory.
Virtual memory fulfills a variety of programming objec-

tives. 1) Memory management and overlays are of no con-
cern to the programmer. 2) No prior assumptions about the

memory space M need be made, and the address space N is

invariant to assumptions about M. 3) Physically, M is a linear
array of locatione; typically, N is linear but contiguous pro-
gram addresses need not be stored in contiguous locations
since the address map f provides proper address translation.
The address map thus provides,"artificial contiguity" and,
hence, great flexibility when decisions about where informa-

tion may be placed must be made (any unused location in M

is suitable),

15

Virtual memory fulfills a variety of system design objec-
tives arisinq in conjunct,on with multiprogramming and time-
sharing systems: the abilities to 1) run a program partly loaded
in main memory, 2) begin execution of a program shortly
after it is presented, 3) reload parts of a program in parts of
memory different from where they may previously have re-
sided, and 4) vary the amount ot storage used by a program.

Virtual memory provides a solution to the Relocation
Problem. Since there is no prior relation between N and M,
it is possible to load parts of N into /le' without regard to their
order. It may still be necessary, however, to use a loader to
link and relocate subroutines within N.

Speed-up. A two-level memory system with main memory
M and auxiliary mernory sufficiently large to contain all of
N can normally be made to Operate at nearly the speed of M.
even though N may be very much larger than M. (To do this,

it is necessary that a program's "working set" of information
resides in M at each moment of time; see Section 4.7.) Two
examples of this may be found in practice. 1) Main memory
is magnetic core, auxiliary is drum, and the address map is
implemented as a combination of hardware and software
[21, Denning] . 2) Main memory is high speed semiconductor
registers, auxiliary memory is magnetic core; according to
this approach, known as "cache store" or -slave memory,"
the address map and management policies are implemented in
hardware, the speeds of the two levels being so fast that
decisions taken by software would be too slow [84, Wilkes].

Space-Time Trading. Let 7-e(n) denote the running time
of the fastest program correctly solving a given problem when
the address space size is n and the entire program is loaded in
memory. The space-time tradeoff states that TA(n-I-1) < Te(n).
Suppose the memory size is m. The observed running time of
this program is T(n) Te(n),-F To (n), where To is the over-

head in the storage management mechanism; To (n) --- 0 when
n<mand To (n4-1)> To (n) when n > m. Thus, when n> m
it may easily happen that T(o+1)> T(n), i.e., space and time
do not trade. Since M is assumed unknown a priori, the space-
time tradeoff cannot he used while programming.

Protection. An elementary form of protection is provided:
since a process may reference only the information in its ad-
dress space, any other information is inaccessible to it.

4.6 Implementations.

Diagrams indicating the operation of address mapping
mechanisms can be found in [21, Denning], [22, Dennis].
The address map f is normally represented in the form of a
table, so that it may be accessed and updated efficiently.
Two points are worth noting: 1) Since a (the size of N) is
typically much larger than en (the size of M), a table with n
entries, one for each element of N, is impractical. A table
with m entries of the form (x,f(x)) is more viable. Since thie
table still must be indexed by a program address x, associa-
tive and hashing techniques may be used to access and update
it. 2) When considering viable implementations of f, it is
necessary to dispense with the notion of providing separate
mapping information for each element of A/, Instead, one
partitions N into "blocks" of contiguous addresses and pro-
vides separate mapping information for blocks only. There
are two alternatives: the block size is fixed and uniform, and

www.manaraa.com

the block size is variable. According to the former alternative--
known as pagingblocks of address space are called "pages"
and the blocks of main memory "page frames." The latter
alternative arises when one considers defining the boundaries
of block according to natural logical boundaries within the
program, such as subroutines. For each alternative, one must
consider: efficiency of the mapping mechanism, efficiency of
storage utilization, and efficiency of possible allocation pol-
icies [21, Denning, pp 165-172] , [50, Knuth, pp. 435=455] .

The instructor should poin, out that there are two conflicting
trends. On the one hand, fixed block size leads to simpler,
more efficient storage management systems when properly
desig-,ed, whereas on the other hand the need for efficient
name management requires that N be partitioned into logi-
cal units called Segments [22, Dennis]. The value of -seg-
mentation" (the ability to have Segments) is discussed in
connection with dynamic ano shared information structures
as part of Module 5.

4.7. Policies

A discussion of particular memory management policies
and criteria for choosing one is appropriate at this point. The
instructor should point out, however, that memory manage-
ment is being studied now as a closed problem whereas it is
in reality one component of a larger, systemwide resource
allocation policy. The choice of a policy may, therefore, de-
pend on additional issues to be raised in Module 7.

A memory management policy comprises three sub-
policies [21, Denning, p 158] : 1) The fetch policy deter-
mines when a block should be moved from auxiliary to main
memory, either on demand or in advance thereof. 2) The
placement policy determines into which unallocated region
of main memory an incoming block should be placed. 3) The
replacement policy determines which blocks should be re-
moved from main memory and returned to auxiliary. The
complexity of the three subpolicies can be compared accord-
ingly as block size is fixed or not; the complexity of a good
policy may well affect the choice whether to use more than
one block size. In demand paging systems, for example, all
blocks are identical as far as the placement policy is con-
cerned, so that memory management reduces to a study of
replacement algorithms [4, Belady] , [58, Mattson et al] .

Demand pagine is widely used and well documented in the
literature, most of what is known being for the case of fixed
main memory size. The instructor should give examples of
policies and compare their relative performance [4, Belady]
[21, Denning] [58, Mattson et al] . He should discuss the
heuristic principle of optimality" for minimizing the rate
of page replacements: Replace the page with the longest ex-
pecte° time until reuse. This principle is equivalent to the
"working set principle": A process should be run if and only
if its working set is in main memory. A complete discussion
of these points is given in [18, Denning] , [21, Denning,
pp 180-181] .

The study of storage management policies may be rounded
out by a treatment of policies for managing the auxiliary store.
Considerations identical to those for managing main memory
arise here: Whether block size should be fixed or not, what
should be the block size(s), and how to store tables locating

blocks in the auxiliary store. In addition, the use of "shortest
access time first" disciplines for optimizing the performance
of rotating-medium (disk, drum) request queues should be
mentioned [1. Abate & Dubner] , [21, Denning, pp 173-176] .

Many a large paging system's auxiliary memory comprises
drums and disks, the drums being used to swap pages of active
programs to and from core, the disks being used for long-
term storage of files. Files used by active programs may exist
on both drum anc, Jisk simultaneously. The term "page mi-
gration- refers to the motion of pages of such files between
drum and disk [85, Wilkes, p 45] .

4.8. Extension to Multiprogramming.
As before, mechanisms can be treated separatLly from

policies. In most systems a separate address space and ad-
dress map are associated with each process. There are then,
two ways to handle the mapping of the resulting collection
of address spaces to the main memory. 1) Base and bound
registers, or relocation registers, may be used to delineate a
region of memory to be assigned to a givLn address space
[21, Denning] , [27, Dennis]. This is useful only when main
memory can hold several address spaces (e.g. CDC 6600).
2) Main memory is treated as a pool of blocks, and the sys-
tem draws from this pool to assign blocks to individual ad-
dress maps as needed. The second alternative is more efficient
to implement, especially if paging is used.

The working set principle is fundamental to multi-
programmed memory management. If this is not followed,
attempted overcommitment of main memory can induce
collapse of performance, known as thrashing [19, Denning] ,

[21, Denning, pp 181-183] .

Module 4: Memory Management Topic Outline

4.1. The Needs of Modern Memory Systems

Techniques for one-level store
Techniques for name management

4.2. Introduction and Discussion of Abstractions

Address and memory spaces
Address map

Motivation

Two level memory system
Argument from large virtual main memory
Argument from binding time postponement
Quantitative justification

Empirical results
Homework problem demonstrating difficulty

of overlays

4.4. Formalization of Concepts

4.5. Properties of One-Level Store

Fulfilling programming obje,11.
Fulfilling system objectives
Relocation
Speed-up; core-drum, cache-core
Space-time trading
Protection

,19.=

www.manaraa.com

Implementation

Form and use of tables
Fixed vs. variable block size

4.7. The Role of Allocation Policies

Subpolicies: fetch, placement, replacement
Tradeoffs: storage utilization, block size, policies
Principles of demand paging
Auxiliary memory management
Paging drum
Page migration

4.8. Extension to Multiprogramming

Base-bound registers vs. pooling blocks
Working set principle of management

Module 4: Memory Management Reference List
Guide

types: C conceptual D descriptive, E example,

T tutorial
level: S student, A advanced student,

I instructor

Key Author Type Level im o ance

1 Abate and Dubner C A 3

4 Belady DE A 4

6 Bensoussen et al. E I 4
18 Denning CT S 1

19 Denning C I 4

21 Denning CDT S 1

22 Dennis C S 1

47 Kilburn et al. CE A 3

50 Knuth C $ 2

58 Mattson et al. C A 3

70 Randell and Kuehner DE S 1

74 Sayre E S 2

84 Wilkes C A 2

85 Wiikes CDT s 2

1-7

www.manaraa.com

MODULE 5 NAME MANAGEMENT

5.1 Motivation

The techniques for memory management studied in Module
4 do not provide for the following important system objec-
tives concerning the computational memory, i.e., that used
to hold the procedures and data structures involved in
computations:

1. Long-term storage of information.
2. Controlled sharing of access to data bases and procedures.
3. Creation, deletion, growth and shrinkage of information

objects &ring the course of ccrnputations.
4. Program modularity, the ability of users to construct

programs by linking together subprograms without
knowledge of their internal operation.

These objectives must be met at the system level because
they concern use of shared resources (space in main memory,
peripheral storage devices and shared procedure or data bases).
In each case questions of naming arise: objects of informa-
tion (e.g., files) must be named for reference by computa-
tions; decisions to share objects and procedures should not
result in conflicts ie. the meanings of names. As a result of
this module, the student should understand how issues of
naming objects arise; and he should learn the concepts and
schemes through which the system objectives listed above can
be achieved. The instructor should emphasize that there i5 as
yet no single, generally accepted solution to the naming prob-
lem, a solution meeting all four objectives. Thus the in-
structor must concentrate on developing an appreciation of
these issues, and the merits and limitations of known ap-
proaches tc their resolution.

5.2 Basic Concepts

In a program, names are the symbols that specify the ob-
jects operated on by the program. In source language programs
names are the identifiers of variables, structures, procedures
and statements. When a program is compiled, most identifiers
are replaced with numerical names (relative addresses) so that
efficient accessing of instructions and data is possible: labels
become addresses relative to the base of the machine code of
the procedure, identifiers of local variables become addresses
relative to the base of the procedure's activation record. Iden-
tifiers of external objects (e.g. other procedures and files)
cannot be replaced by the compiler, and therefore must be
retained in essentially unaltered form in the compiled
procedure.

A compiled procedure is assigned a position in the address
space of a computation (by a loader or a linking routine) so
that it may be executed with other procedures during a com-
putation. When this is done symbolic references between pro-
cedures are usually replaced with names in the form of ad-
dresses that locate the procedure within the address space
of the computation.

Context

By nature of programmers and machines, the same name
often will have two or more valid meanings. Some examples

are: the same ,dentifier may be used in distinct FORTRAN
subroutines or ALGOL blocks; the address field of an in-
struction in the machine-code for an ALGOL procedure must
refer to different instances of variables for distinct activations
of the procedure; machine language programs of different
users may occupy the same memory locations having f"fferent
meanings accordingly.

In each of these cases, the different meanings of a name
are chstinguished by additional information available to the
compiler, loader, or hardware when the name is interpreted.
This additional information is called the context in which the
name is used. (Exercise: In each of the examples above, what
are the contexts of the names?)

The context of a name need not be known at all stages of
a name's use or transformation. For example, the compiler of
a procedure cannot a(t on external names (those referencing
other procedures, data structures, or files); it must leave such
names in essentially the same form as they appeared in the
source prograrh The context necesary for correct interpre-
tation of these names is often not known until the procedure
is -assigned to the address space of a computation, or perhaps
not even until execution is under way.

Distinct contexts for names used by different users are
often provided by physically separating the information be-
longing to one from that belonging to another. This arrange-
ment makes sharing of information (other than system infor-
mation) difficult. If each user's information is catalogued in
a "directory" but still is physically separated from other in-
formation, program modules can be shared only by the tedious
and wasteful process of copying them from one directory to
another.

A Fundamental Principle

In the discussions of dynamic structures arid sharing of
procedures to follow, there are illustrations of an important
principle concerning the interpretation of names by a com-
puter system:

The meaning of a name must not change during any 'nter-
yal within which independent procedures may use the name
to refer to the same object.

This means, for example, that the positions of objects within
the address space of a computation cannot be changed if these
objects are referred to by independently specified procedures.
The difficulties in using overlay schemes [22, Dennis), [54,
Lanzano] , [68, Pankhurst] for handling allocation of main
memory stem from violation of this principle: because over-
lay schemes involve assigning two or more objects to over-
lapping areas in address space, the names (address) of such
areas change in meaning during computation. To avoid chaos,
each procedure making a change in the allocation of memory
must inform all other procedures of the new arrangement of
objects in address space. This requisite communication is,
however, inconsistent with the objective that procedures be
independently written.

www.manaraa.com

5.3 File Systr is

Computer systems generally provide for long term storage
of information in the form of files. A file is an organized col-
lection of data usually kept in peripheral storage devices such
as magnetic dr 11111 or disk, or magnetic tape. The file manage-
ment par t of an operating system provides users means for
generating and using files and manages the allocation of files
to available space on storage units. Each user of the system is
provided with a directory, in which his files are indexed or
cataloged by names of his own choosing. In a number of sys-
tems, the objects indexed in a directory may include other
directories as well as files, thus giving each user ability to
create a directory tree, for organizing his collection of filed
procedures and data bases in a hierarchy. A particular object
is specified by a sequence of names, a pathnarne, that selects
a path from a root of the directory hierarchy to the desired
object. The file system provides also for protectioll and con-
trolled sharing of files (Lois will be discussed fully in Module
6). These general concepts of file system organization are dis-
cussed in 116, Daley and Neuman] , [24, Denois and Van
Horn] and [10, Clark] . Since the hierarchy of directories de-
fines a mapping from pathnames to objects, the file system
may be regarded as defining an address space for files. In
most computer systems the address space defined by the file
system is logically distinct from the address space foi the
computational memory. Hence, procedures and portions of
files must be copied between the computational address space
and the file address space during the course of a computa-
tion, an object being accessible only if it is in the computa-
tional address space.

Files themselves may be structured in several ways:

1. As a string of bits, characters or words.
2. As a sequence of records.
3. As an indexed collection of records, each record having

a unique key. The records may be accessed by key or
in the sequence defined by a natural ordering of the
keys.

Files structured as ordered sets of words ail often managed
as sequences of blocks of fixed size for coriver.ient allocation
to free storage space (note the analogy with the use of paging
to implement a linear address space in main memory). The
block structure of files is a matter of implementation and is
made invisible to user computations. The idea of "record- is
an historically important way of delimiting fragments of data,
originating in the use of punched cards. Files of records are
stored on contiguous areas of storage devices (disk and tape)
and are most suitable for sequential processing as is common
practice in business applications. The indexed sequential file
is important in systems that access data bases in "real time."
Hash coding techniques are used to locate the record for an
arbitrary key without searching the file [10, Clark], 142,
IBM] . In discussing file structure, the instructor should dis-
tinguish carefully between structure that is seen by the user
(the abstract structure of the file) and structure for imple-
mentation purposes that is hidden (or should be hidden) from
the user.

Files may be of arbitrary size within wide limits, and may
grow or shrink during processing; thus a file system provides

19

facilities for manipulating dynamic structures. Modular pro-
amming may be done using program rnodules that obtain

inputs from files and store results in other files. File direc-
tories provide long tern) storage for procedures and data and
i-nay include protection and shared access control features.
Thus a general purpose file system would seem to achieve
all four system objectives stated earlier- Yet, there are serious

I. A data file (or the portion of it being processed)
must be copied into the computational address space
to gain the advantage of accessing it through the
hardware addressing facilities of the computer. The
implied loss of efficiericy will be severe for computer
limited computations if files are used as the basic
objects.

Procedures or program modules retrieved from the
file system must be loaded into the computational
address space prior to execution, In most systems
all procedures munt be loaded in advance of execu-
tion, wasting addrcs.s space and making it impos-
sible to activate procedures whose names are not
known until ret ved from data bases or typed in
from a terminal. If procedures may be loaded
dynamically, the copying and linking steps will
be time consuming.

There are few generally accepted standards for the
structure and naming of files and for the primitive
file operations implemented by file systems. Exist-
ing standards relate to COBOL, a language for data
processing applications. Conventional file systems
are not a suitable base for efficient implementation
of procedures expressed in ALGOL, FORTRAN or
or PL/1.

IV. Clashes of identifiers (file names) appearing in inde-
pendeptly written procedures are not avoided. This
matter is discussed further in the Section 5.6, on
modularity.

5.4 Segmented Address Space

These four limitations result at least in part from the dis-
tinction between the computational memory and the file mem-
ory, and can be relieved by using the virtual memory concept
to remove this distinction. This has been achieved by com-
bining use of file directories with a large, segmented address
space. The address space is divided into a large number of seg-
ments, each being potentially large enough to hold any object
(procedure or data file) indexed in the file directories. Ref-
erence by a computation to information in the address space

.--lade by a pair of values (segment number, word number),
segment numbers being assigned to procedures and data files
when they first are referenced by a computation. After the
first reference, the given procedure or data object is bound to
a particular segment of address space and, thereafter, the ob-
ject may be referenced efficiently as a resident of address
space rather than by a search of its pathname in the directory
hierarchy.

Two methods are ii use for implementing a segmented ad-
dress space.in one [21, Denning] [43, Iliffe] [44, Iliffe and

www.manaraa.com

Jodeit] , [70, Randeli and Kuehner] , the segment number is
'iced as an index in a systern-managed table of "descriptors"
or "codevvords." A descriptor (codeword) locates the origin
of a segment within the main memory if space in main mem-
ory has been allocated for the segment, or in peripheral rnem-
ory otherwise. The other method divides segments (linear
name spaces in their own right) into pages and uses two levels
of system tables to map (segment number, word number)
pairs into main memory locations [21, Denning] [22,
Dennis] , [15, Daley and Dennis] . In both schemes the sys-
tem tables also contain access control and protection tags.

The use of a segmented address space is valuable for pro-
viding independenily written procedures space for large dy-
namic structures, and for permitting all objects to be shared
by computations if desired. These ideas are examined in the
following paragraphs.

In current systems, the advantages of segmented address
spaces have not compensated far the difficulty and complexity
of their efficient implementation. For example, the mech
anisms required for linking procedures together in the address
space of a computation are intricate 115, Daley and Dennis]
and should be consideved an advanced topic.

5.5 Dynamic Structures

A dynamic data structure is an organized collection of
information that changes in extent during a computation. Two
types of such data structures are in common use: 1) variable-
size tables, such as symbol tables, stacks, or matrices; and 2)
linked-list structures 131, Foster) . Both types (or combina-
tions thereof) require some mechanism for managing the ad-
dress space in which they reside. With respect to the first type,
there are two approaches, depending on the size of the ad-
dress space and the nature of the mapping to memory loca-
tions if addresses are virtual. If the address space is sufficiently
large, each structure may be assigned to a separate segment
of address space, large enough so the structure may grow and
contract without conflicting with other structures. Since large
parts of the address space will be unoccupied, this approach
is of interest only when a virtea! memory mechanism is
present to map the occupied parts of address space into mem-
ory (e.g. a segmented address space).

If, on the other hanr:, a large address space is not available

but the structures invoh.i in a computation will fit into
memory space, a system 0: routines may be provided for
managing the assignment of parts of structures in the available
space. Schemes for dynamically allocating contiguous blocks
within a relatively small address space are described in [50,
Knuth, pp 435-455] and are similar in function to the rou-
tines discussed below for managing linked structures.

A linked list structure is a collection of items, each con-
sisting of a datum and a pointer (or pointers) to othe items.
The pointers are addresses that locate items within the ad-
dress space [31, Foster] . A particular datum is accessed by
following a chain of pointers from a single item that serves as
the root of the structure. The system routines which access
the structure on behalf of a program have three functions:
1) Free storage-management, i.e., handling allocation of new
items, deletion of old items, and maintaining records of free
space; 2) garbage collection, i.e., identifying items which
have been deleted but not yet returned to the pool of free

items; and 3) compaction, i.e., the relocation of live ite,ris
in the address space so that the live items occupy a con lig-
uous region [45, Jodeit] , [50, Knuth, pp 435-455.]

Compaction is used when the structures must be placed
into as small a portion of address space as possible. Since the
compaction process invalidates the addresses in the items until
it is completed, no accesses can be permitted to the structure
during compaction.

This is an important illustration of the generA principle
stated at the beginning of this module. Compaction changes
the names (addresses in this case) by which components of
data structures may be referenced by computations. If two

computations access the data structures concurrently, both
must be halted during compaction and, moreover, any ad-
dresses (pointers to data structure items) held in private
working storage of either computation must be corrected.
This is why compaction is avoided in the design of storage
allocation schemes for multiprogram operating systems. Com-
paction is often used to limit linked structures to a smaller
contiguous portion of virtual address space to improve per-
formance of single process computations on a paged computer.

Linked list structures are the standard representation of
data in certain programming languages such as LISP; but they
are often useful in providing efficient storage of complex
structures for any application. For this reason, facilities for
manipulating linked structures are provided in languages such
as PL/I and ALGOL 68.

5.6 Modularity

The construction of a computer program can be greatly
simplified if its major parts are already in the form of pro-
gram modules that can be easily combined without knowl-
edge of their internal operation. The student should learn
the characteristics of computer hardware and software
essential to modular programming, and understand how
pract;cal systems achieve or fail to achieve these necessary
properties.

Two fundamental requirements for successful modular
construction of programs are:

1. Program modules to be used together must employ
consistent representations for all information exchanged
among them.

2. A universal scheme must be established by convention
for interfacing program modules with one another.

Modularity can be achieved for a particular group of system
users if they adopt uniform conventions among themselves
for data representation and intermodule communication. Such
standards can be developed and agreed upon for any com-
puter system, but seldom without some compromise between
degree of generality and efficiency of program execution.
Modularity achieved through use of shared files in the man-
ner described earlier is an example. Different user groups,
however, are likely to adopt conflicting conventions, and
programs which do not honor such conventions are unusable
as modules.

This discussion of the limitations of imposing conventions
on existing systems should be followed by study of system
characteristics that permit any program written for execution

20

www.manaraa.com

by the system to be used a module in the construction of
larger programs.

The requirement for consistent representation of intercom-
municated data is met if all modules are expresed in the same
source language, processed by the same compiler, and use
only the data types provided by the language. Otherwise, this
requirement cannot be satisfi -d without extreme care in ihe
design and implementation of the language processors and
execution environment [80, Wegner] , [59, McCarthy et al] .

The most important form of program module is the proce-
dure, for which basic implementation concepts were treated
in Module 2. For modular programming, a procedure's author
must be free to choose whatever names he desires for objects
referenced by the procedureinstructions, variables, data,
structures, and other procedureswithout clashing with inde-
pendent choices made by the authors of other procedures.
To aid in understanding the solution of this and related
naming problems, the notions of -argument structure" and
"procedure structure" may be introduced.

The information which does not vary from one activation
to another of a procedure P is called the procedure structure
of P. It consists of

1. The code (machine language) of procedure P.
2. The procedure structures of other procedures that are

used by P in the same way in every activation of P.
3. Any data structures (e.g., own data in ALGOL 60, or

STATIC data in PL/I) that "belong" to the procedure
in the sense that all activations of P refer to the same
instances of the structure.

The parts of the procedure structure must be referenced
directly by names appearing in the code of the procedure.
These names are chosen by the author of the procedure and
should be of no concern to the user of the procedure; the
context in which these names are interpreted must therefore
be distinct for each distinct procedure.

The information which may change from one activation to
another consists of

1. The input data.
2. The output data.
-3. The activation record (working storage),

The argument structure consists of the input and output data.
Conceptually, the components (simple or compound) of the
argument structure can be assumed numbered by distinct
integers 1,2,3, In his coding of the procedure, the author
may associate symbolic names x1 ,x2 ex3, . with these num-
bered components. Similarly, the user of a procedi 're may
associate his own symbolic names y1,y2,y3, sh these
numbered components. Thus the ordering and stru ture of
the components is fixed and part of the interface sp cifica-
tion, but both author and user are free to choose names for
them as they please.

The names used in a procedure to reference its activation
record are local and the procedure's author must be free to
choose them as he pleases. Since these names refer to differ-
ent data in different activations, the context in which these
names are interpreted must be different for each activation.
Furthermore, the working storage must be able to expand to

24 21

meet the storage requirements of the activation, which may
he arbitrarily large.

If one procedure may be called from several independently
written procedures, nonlocal references (as in ALGOL 60)
have no meaningful interpretation. Also, external references
(as in a FOFi TR AN implementation) only make sense in a
global context, where name clashes are possible. Thus mod-
ular programming must be done without the aid of side effects
all input and output data of a program module must be
conveyed as components of the argument structure.

Implementations of ALGOL 60 provide distinct working
storage areas for nested procedure activations and therefore
handle recursive programs, the amount of working storage
being specified upon procedure activation. Thus limitation II
and, to some degree limitation I, are overcome. In systems
that offer ALGOL 68 or PL/I, means for representing and
manipulating linked structures are provided, thereby remov-
ing limitation III for an important class of data structures.
Yet clashes between names (of external procedures and files,
for example) are still possible and limit the degree to which
modular programming is possible. This problem is discussed
in [24, Dennis and Van Horn, pp 151-154] , [78, Vanderbilt,
Chapters 2 and 3] .

Clashes could be avoicied by providing two contexts for the
interpretation of "external" names occurring within proce-
dures. Context for procedures and files that are part of the
procedure structure would be provided by a procedure direc-
tory associated with the procedure in execution. Context for
procedures and files named in the argument structure would
be provided by an argument directory selected by the calling
procedure. In this way, all names would be interpreted in
appropriate contexts, and all possibilities G, name clashes
avoided. Although this idea is not implemented in any cur-
rent system, some similar scheme will be necessary in future
systems if modular programming is to be achieved.

With these concepts as background, the class can study the
extent to which modular programming is permitted by var-
ious classes of systems. In the FORTRAN environment of
Module 1, each subprogram has a single, permanently-assigned,
fixed activation record. Context for naming the parameters
of a call is typically provided by the return address, a list of
parameters being in some fixed location with respect to each
point of call, internal references within a subroutine are as-
signed meaning within the body of the subroutine only.
Some limitations of this are

1. Working storage is not expandable.

2. Recursion is not implemented.
3. There is no means for representing dynamic objects.
4. External references made by subprograms are inter-

preted within the (global) context of the loader's sym-
bol table; thus a name clash will occur if two subpro-
grams use the same name to refer to distinct objects.

(This can be especially troublesome if subprograms
written by authors for their personal environments are

used in other environments.)

www.manaraa.com

5.7 Sharing (Advanced Topic)

To permit sharing of procedure and data among users of a
computer system, it is necessary to have a systemwide naming
scheme so that one user can reference objects owned by others.

One method for doing this uses a systemwide directory tree
and allows directories to contain links to other directories
116, Daley and Neumann] .

As an acvanced topic, the instructor may discuss imple-
mentations in which a single copy of a j_ icedure or data
object in main memory is used by all computations sharing
access to the object. There are three motivations for doing
this: 1) conserve main memory, 2) avoid redundant copies of
information, and 3) reduce overhead required to move extra
copies in and out of main memory.

In most systems sharing of code in main memory is limited
to supervisor and library programs; it is implemented by re-
serving for these shared objects a certain known portion of
each user's address space.

If, on the other hand, every procedure in a computer sys-
tern must be regarded as potentially shared among computa-
tions, the implications for addressing mechanisms of the sys-
tem are far-reaching [22, Dennis] . Not only is it necessary to
separate data and procedure information by means of "pure
procedures," but a satisfactory means of transferring control

between procedures is needed [15, Daley and Dennis] .
If -,entrol transfer instructions contain absolute addresses

in the address space of a computation, a shared procedure
must be assigned to the same position in the address space of
every computation that uses it. It follows that each address
space must sufficiently large to hold all potentially shareable
procedures. Since there is no way for the system to know
which procedures users may wish to share, it is attractive to
implement a single address space for all computations in the
system. No such system has been constructed, and it remains
to see whether such an implementation would be practical.

Now, suppose control transfer instructions contain ad-
dresses relative to the base address of the procedure in which
they appear. A procedure may now be assigned different posi-
tions in the address spaces of different computations, but the
processor must contain a base register containing the base
address of the procedure in the applicable address space; all
control transfer instructions are interpreted relative to th is
base register. Provision must be made for reloading the base
register whenever control is passed between procedures, and
8 scheme for properly implementing external references must
be worked out. One complete scheme is described in [15,
Daley and Dennis] . Because addresses have different meanings
for different computations, this scheme has some serious dis-
advantages. Communication between computations is difficult,
since directory names rather than addresses must be used to
identify objects in messages. Also, once a procedure has been
assigned a position in address space of a computation, it is
not legitimate for the system to delete it until the user can
guarantee no fu. (ler attempt to access it by its assigned ad-
dress will be made. As a result, occupancy of addr ss space
will tend to increase as a computation references new objects;
thus a program that runs for an extended period, continually
accessing new information, will have to manage its own use
of address space.

Module 5: Name Management Topic Outline

5.1 Motivation

System objectives concerning storage and access to
procedures and data bases.

Issues concerning treatment of names by system
Objective to appreciate issues and understand

merits of known techniques

5.2 Basic Concepts

Forms of names: identifiers, addresses; translation of
names by compiler, loader, and system.

Context for interpretation of names; examples
A fundamental principle: meaning of name must not

change while in use by independent procedures
Example: overlay schemes.

5.3 File Systems

Files, directory hierarchies
Structure of files, their representation on strange

devices, implementation
Achieving system objectives by use of files to

represent data
Limitation of file systems

5.4 Segmented Address Space

Segments, two-component addresses, binding procedure
or data to address space

Implementations
with base registers
with paging

5.5 Dynamic Structures

Two types: arrays of variable size; linked structures
Management of address space for dynamic structures:

free space management, garbage collection
Compaction, a violation of the naming principle
Desirability of large segmented address space.

5.6 Modularity

Fundamental requirements
consistent data representations
interfacing conventions

Concepts for modular use of procedures
procedure structure, argument structure

Limitation of systems for modular programming
FORTRAN
ALGOL 60
ALGOL 68 or PL/I

5.7 Sharing

22 2

Use of links in directories for permitting controlled
access

Motivations for shared use of information in main
memory

Implementation alternatives
common address space for all computations
distinct address spaces with relative addressing;

the problem of linking.

www.manaraa.com

Module 5: Name Management Reference List
Guide

types: C = conceptual, D = descriptive, E example,
T tutorial

level: S = student, A = advanced student,

Key

instructor

Author Type Level Importance
10 Clark D I 4
15 Daley and Dennis CD A 2

16 Daley and Neumann CD S 2

21 Denning CDT S 2
22 Dennis C S 1

24 Dennis and Van Horn CD S 1

31 Foster T S 2
42 IBM 0 I 4
43 Iliffe CD S 1

44 Iliffe and Jodeit CD S 1

45 Jodeit D I 2

50 Knuth DET S 2
54 Lanzano DE I 2

59 McCarthy et al. CD 5 2

68 Pankhurst D S 2

70 Randell and Kuehner D 8 3

72 Seltzer C A 3

80 Wegner CD S 3

www.manaraa.com

MODULE 6 - PROTECTION

-Protection" is a general term for all the mechanisms
which control the access of a process to other objects in the
system. There is an immense variety of .mplementations, it
being normal for a single system to have several different and
unrelated protection mechanisms; for example, supervisor/
user modes, memory relocation and bounds registers, a num-
bering system for open files, access control by user to file
directories, and a password scheme for user identification.

The study of protection has been deferred until this
module of the course because the concepts studied so far
could be embodied in a computer system having no protec-
tion features, it being assumed that all users are friendly and
infallible. This observation should not be taken to imply that
protection is a minor consideration. indeed, real usersand
the programs they writeare far from infallible, and privacy
is a ccntral issue in most systems. As a result, protection con-
siderations are in fact pervasive in system designs.

The abstractions developed in this module should be il-
lustrated from the operating systems being studied as exam-
ples. The material in this module is presented here in consid-
erable detail because the literature is inadequate.

6.1 Motivation

The original motivation for putting protection mech-
anisms into computer systems was keeping one user's malice
or error from harming other users. A user can harm others in
several ways:

1. By destroying or modifying another user's data;
2. By reading or copying another user's data without

permission;
3. By degrading the service another user receives, e.g. using

up all the disk space or getting more than a fair share of
the processing time. An extreme case is a malicious act
or accident which crashes the system (the ultimate
degradation).

More recently it has been realized that these reasons for
wanting protection are just as strong if applied to programs"
as well as -users." This line of reasoning leads in three
directions:

1. Toward enforcing the rules of modular programming so
that it is possible to guarantee (through the protection
system) that errors in one module will not affect
another one. This kind of control engenders confidence
in the reliability of a large system, since the protection
provides "fire walk" which prevent the spread cf
trouble [34, Graham] , [52, Lampson] .

2. Toward the support of proprietary ograms, so that a
user can buy a service in the form of a program which
he can only call, but not read [52, Lampson] . A simple
case is a proprietary FORTRAN compiler whose use is
charged by number of statements compiled. A more
complex case is a proprietary program which compares
trial data against a proprietary data base.

3 A third case may suggest that some generality is really
required to handle those problems, rather than a few ad
hoc mechanisms. This is the construction of a routine

24

to -issist in the debugging of other programs. A de-
bugger needs to be able to access all the objects the
program being debugged can, but must protect itself and
its data (breakpoints, symbol tables, etc.) from de-
struction by malfunctions in the program being debugged
151, Lampson] , [52, Lampson] .

6.2 Protection Domains

At the foundation of any protection system is the idea of
protection environments or contexts. Depending on the con-
text in which a process finds itself, it has certain powers;
different contexts have different powers. A simple example
of a two-context system, the contexts being implemented in
hardware, is computer with supervisor and user (problem)
states (modes). A program executing in supervisor state can
execute I/0 instructions, set the memory protection registers,
halt the machine, etc., but it may do none of these things in
the user state. A somewhat more elaborate example is OS/360
MVT, in which there is one supervisor context and up to 15
user contexts; the limit of 15 is enforced by the use of 4-bit
keys in the 360's memory protection system. Yet another
example is the individual users of a multiaccess systemeach
has his own protected program and files, so that there are at
least as many protection contexts as there are users [85,
Wilkes].

These examples suggest the generality and subtlety of the
idea. Many words have attempted to capture it: protection
context, environment, state, or sphere [24, Dennis and Van
Horn] , capability list [53, 1 ampson] , ring [34, Graham] ,
domain [52, Lampson] . The word "domain" will be used
here, since it is somewhat neutral and has fewer misleading
associations thee the alternatives. An idealized system is
described below in order to clarify the meaning of the term
"domain" rid provide LI framework for the description of
real systems.

The idealized system Lonsists of processes which share
nothing and communicate with each other only by means of
messages. A message consists of an identification of the send-
ing process followed by an arbitrary amount of date. The
identification is supplied by the system and therefore cannot
be forged. Processes are assigned unique integer names by the
system. Any process may send messages (at its expense) to
any other process. Messages are eeceived one at a time in the
order in which they were sent. See [37, Hansen] for an actual
system very similar to this one, but described from a some-
what different viewpoint.

Within this system every object belongs to exactly one
process and cannot be accessed by any process other than its
owner. Each process therefore defines a single domain. It
may also be regarded as a separate machine, cr.mplete with
memory, file storage, tape units, etc., and isolated from all
contact with other processes except for the message trans-
mission facility. This scheme constitutes a logically complete
(though inefficient) protection system, except for two points
which are discussed later.

The following point (which has nothing to do with pro-
tection) is important. With this system we can simulate a sub-

27

www.manaraa.com

rowine mechanism, regarding one process (A) as the calling
routine and another (B) as the routine being called. To call
B, A sends B a message specifying the parameters and then
waits for 13 to reply. To return, B replies with another mes-
sage containing the value, if any, and then begins waiting for
another call.

Unlike an ordinary subroutine calling mechanism, this one
works even if B must be protected from A, e.g. if B is the
supervisor and A a user program. It works because B deter-
mines where he is "entered," namely at the point where he
waits for A's message Random transfers of control to an ar-
bitrary point in B are not possible. (Multiple entry points are
possible, since B can decode one of the parameters to select
an entry point.)

Furthermore, the "return" is protected also. Thus, if A
mistrusts B , e.g. in the case of a command processor calling
a user program, the same argumen *. shows that B will not be
able to return to A except in the manner intended by A
Spurious additional -returns" (extra messages) from B are
impossible as well, since A knows when he is expecting a re-
turn message from& and can ignore messages at other times.
The scheme clearly works even if each domain mistrusts the
other, as in the case of calling a proprietary program [53,
Lampson] .

What if A calls B by this mechanism and B never returns,
because B is faulty or even malicious? If A wishes to guard
against this possibility, he need only arrange (before calling
B), to receive a message from some reliable system process C
after an elapsed time longer than B is expected to run. If
the message A receives next is from C rather than from B,
then A knows something has gone wrong and can proceed to
take corrective action.

Finally, we show that domains are protected against un-
authorized call. Recall, that, as part of each message, tha
system supplies the identity (name) of the caller. This identi-
fication may be thought of as a signature, a seal, a badge, or
a ticket, which B can use to check the validity of the call.
The key point is: the identification is supplied by the sys-
torn which guarantees that it cannot be forged. This point is
so simple and yet so subtle that we will illustrate it with an
example. Suppose that A, whose system identification is
6389, sends to B a message consisting of three numbers: 31,
45, 9. What B will receive is four numbers: 6389, 31, 45, 9.
The first number is attached to the message by the system
from its knowledge of the sender's identity. There is no way
for A to affect the value of the first number in the message.
From B's point of view, then, the message starts with a single
identifying integer. If B is expecting a message from A, all he
must do is look through his message buffer until he finds one
starting with A's identification number. How 8' gets to know
A's name is an interesting question which will be examined
below, but the following simple scheme will suffice: A's user
at his terminal asks A for the number and shouts it across the
room to B's user, who types it in to B. Remember that this
number is not a password. Knowing it allows B to give A ac-
cess, but does not help anyone else (including B) to imper-
sonate A, as the description of message handling oiven above
should make perfectly clear.

The kind of protection or access control which can be
enforced with this system is extremely flexible and general,

25

since arbitrary prograrns can be written by users to make the
protection decisions. (Suggested exercise: show how an in-
structor could implement a grading program which gives
student programs at most three tries at obtaining a cofrrect
answer.)

As was suggested earlier, the system we have been describ-
ing has two major flaws. First, it is impossible to regain con-
trol over a runaway process, since there is no way to force a
process to do anything or to stop it. This makes debugging
difficult. Although such a process cannot do any damage, it
can waste resources. Second, an elaborate system of conven-
tions is required to get processes to cooperate. Suppose, for
example, that process A has some data which it wants to
share with processes or friends of A's owner. It is necessary for
A's owner, whom we regard as another process communicating
with A via a terminal, to learn the names of his friends' proc-
esses and to include in A some subroutine which knows these
names and responthappropriately to messages carrying them
as identification, Moreover, A and its ,:orrespondents must
agree on the interpretation of messages.

The protection system we have described is as devoid of
convenience as is a central processor without an assembler.
Just as the processor needs an elaborate system of conven-
tions in the form of lo;iders, binary formats, assemblers, etc.,
to make it usable, so a protection mechanism requires a sys-
tem of conventions on process names, data formats, etc. The
issues raised by these two points are discussed in the next
section.

6.3 Objects and Access Matrices

In order 1,7 provide facilities for external control of proc-
esses, it is necessary that the protection facility allow for con-
trolled access of one domain by others. (The simple scheme
described above allowed no access at all.) Thus there.must be
a way of describing what is to be shared and how access is to
be controlled amcmg domains. Access to processes can be
controlled by a simple tree structure [37, Hansen] , [51,
Lampson] , but it can also be handled more generally by the
same machinery which we will introduce below. (It is not at
all clear that the scheme described below is the only, oi even
the best, set of conventions to impose, but it does have the
property that most of the schemes used in existing systems
are special cases of this one.)

The more general protection system can be described in
terms of another idealized system with three major com-
ponents: a set X of objects, a set D of domains, and an
access matrix (access function) A. Objects are the things in
the system which have to be protected. Typical objects in
existing systems are processes, domains, files, segments, and
terminals. The question what to designate as objects is a mat-
ter of convention, to be determined by the protection re-
quirements of each System.

Objects have names with global validity, which we will
think of as 64-bit integers, Object names are handed out by
the protection system on demand, and their interpretation
is up to the programs which operate on the objects. This point
point is clarified with an example below.) The object names
do not have to be 64 bits; there should, however, be an ex-
tremely large set of potential object names, for two reasons.
1) Each object must have a unique global name, and an

www.manaraa.com

object's name may not be reused after the object ceases to
exist. 2) If a system error ch,inges a bit in a name, the re-
sulting bit string should be another valid name only with
exceedingly small probability. The MU LTICS system, for
example, uses the time in microseconds since 1900 as the
un lue object name.

As before, a domain is a protection context; domains are
the entities which have access to objects. Each domain has
potentially different access to objects than other domains. In
the system of Section 6.2 each domain was defined by a proc-
ess, and had exclusive access to its own objects and none to
any others. This idea is now being generalized so that objects
can be shared among domains. There are two ways to view
this generalization:

1. Each domain owning objects in the system of Section
6.2 agrees by convention that it will do certain things
with these objects upon demand from some other
domain, provided the other domain has accessccord-
ing to the rules below.

2. For certain -built-in" objects, at least, the access rules
below will be enforced by mechanisms already present
in the system for other reasons (whether this is hard-
ware, as in the case of memory protection, or software,
as in the case of file directories, is not important). This
may lead to greater efficiency (memory protection is
an extreme example) but it is not general and must be
supplemented by conventions as in point 1 above i the
system is to be extensible. As far as the protection sys-
tem is concerned, it makes no difference whether we
assume the existence of such other mechanisms or not.

Note that domains are objects, not sets. In particular, objects
cin not "belong to" domains.

The access of domains to objects is defined by the access
-matrix A. Its rows are labeled by domain names and its
columns by object names. Element A[i,j] specifies the access
which domain i has to object j. Each element consists of a set
of strings called access attributes: typical attributes are -read,"
-write," "wakeup." We say that a domain i has -x" access
to an object j if "x" is une of the attributes listed in ANL
Associated with each attribute is a bit called the copy flag
which controls the transfer of that access attribute in a way
described below. With the access matrix of the figure, for
example, domain 1 has -owner" access to file 1 as well as
explicit "read" and "write" access. It has given -read-
access to this file to domains 2 and 3.

Domain 1

Domain 2

Domain 3

*copy flag set

Domain 1 Domain 2 Domain 3 File 1 File 2 Process 1

ovine!
contr l

*owner
control

*call
*owner
*read
*write

call *read wakeup

owner
convol

owner

Figure: Portion of an access matrix

Entries in the access matrix are made and deleted accord-
ing to certain rules. The following are examples of such rules
A domain d can modify the list of access attributes for do-
main d' and object x as follows (examples assume the access
matrix of the figure):

1. d can remove access attributes from A 1:61",x; if it has
"r;ontrol" access to d'. Example: domain 1 can rerncve
attributes frOrri rOWS 3 and 3.

2. d can copy to A [01',x] any access attributes it has for
x which have the copy flag set, and can say whether
the copies attribute shall have the copy flag set or not.
Example: domain 1 can copy -write" to A [domain 2,
file 1].

3. d can add any access attributes to A foc',,x with or
without the copy flag if it has "owner- access to x.
Example: domain 1 can add "write" wA [domain 2,
file 2] .

The reason for the copy flag is that without it a domain can-
not prevent an undebugged subordinate domain from wan
tonly giving away access to objects.

The rules above do not permit the "owner- of an object
to take away access to that object. Whether this should be
permitted is an unresolved issue. It ;s permitted by most sys-
tems; see 178, Vanderbilt] for a contrary view, according to
which an "owner" has in essence entered a contractual agree-
ment to provide services to other domains. If this view is
adopted, the following rule might be appropriate.

A. d can remove access attributes from A kl',x.1 if d has
"owner" access to x,,provided d' does not have "pro-
tected" acces to x.

The "protected" restriction allows one "owner" to defend
his access from the other "owners." Its most important appli-
cation is to prevent a program being debugged from taking
away the debugger's access; it may be very inconvenient to do
this by denying the program being debugged "owner- access
to itself.

The protection system itself attaches no significance to
any access attributes except -owner," -control," and -pro-
tected." Thus the relationship between, say, the file-handling
module and the system is something like this. A user calls on
the file-handler to create a file. The file-handler asks the sys-
tern for a new object name n, which the system delivers from
its stock of 2 64 object names, The system gives the file-
handler "owner" acce5s to object n. The file-handler enters
n in its own private tables, together with other information
about the file which may be relevant (e.g. its disk address). It
also gives its caller "owner" access to n and returns n to the
caller as the name of the created file. Later, when some
domain d tries to read from file n, the file-handler will exam-
ine A to see if "read" is one of the attributes, and re-
fuse to do the read if it is not.

6.4 Some Implementation Techniques

Since A is sparse, it is not practical to store it in the ob-
vious way. The most intuitively simple alternative would be
a global table T of triples (d,x,A[d,x]) which is search when-
ever the value of A [d,x] is required. Unfortunately, this
usually is impractical:

www.manaraa.com

1. Memory protection is almost certainly provided by
iiardware which does not use T This is the molor area
in which the operating system designer has iittle con-
trol. (It is discussed in Section 6.5.)

2. It may be inconvenient to keep all of T in fast-access
memory, since at any given time most objects and per-
haps most domains will be inactive. An implementation
is therefore needed which keeps only currently reievant
parts of A readib, available in fast-access memory.

3 Objects or dome: Is may happen to be grouped in such
a way that T is very wasteful of storage. A simple
example is a public file, which would require an entry
in Tfor every domain.

4. It may he necessary to be able to obtain a list of the
objects which a given domain d can access, or at least
the objects for which d is responsible or is paying for.

An implementation which solves 2 and 4 directly attaches
to each domain d a table of pairs (x,Ald,x). Each of these
pairs is ofter called a capability [24, Dennis and Van Horn]
[43, lliffe] , [52, Lampson] [53, Lampsonl , [85, Wilkes]. If
the hardware provides for read-only arrays which can only be
generated by the supervisor, then each capability can be im-
plemented as such an array, containing the name of the object,
and a suitable representation of the access attributes (perhaps
as bit strings), Most hardware does not provide the kind of
protected arrays we have been assuming, but they can easily
be simulated by the supervisor (at some cost in convenience)
on any machine with some kind of memory protection. It is
usually convenient to group capabilities together into capabil-
ity lists or C-lists. A domain is then defined by a C-list (and its
memory, if that requires special handling; see Section 6.5).

With this kind of implementation it may be convenient
to allow additional information to be stored in a capability,
e.g. the disk address of a file, or a pointer to some table entry
to save the cost of looking up the object name [53, Lampson].
(Exercise: devise a mechanism for controlling who gets to
alte;- this additional information.)

Capabilities can also be used to solve problem 3 above.
All we have to do is construct a tree of domains, each with a
set of capabilities or C-list [24, Dennis and Van Horn] , [43,
I liffe] [78, Vanderbilt] . Everything we know about tree-
structured naming schemes can then be applied to economize
on storage or share capabilities.

A completely different approach to storing A attaches
the protection information to the object x rather than the
domain, in the form of a list of pairs (d,A). With each
object x there will be a procedure A (d) which returns
A fd,x1. The procedure is provided by the owner of the
object and can keep its own data structures to decide who
should get access. Note that at least some of these procedures
will have to refrain from accessing any other objects in order
to prevent infinite recursion. This is the idea of an access con-
trol list, such as is used in MULTICS.

As before, it is essential to note that the procedure Ax gets
a domain name as argument, and this cannot be forged (see
Section 6.2). Unique names, however, may not be convenient
for the procedure to remember; access is likely to be associated

with a person or group of people, or perhaps with a program.
For example, capabilities can be used as identification, since

27

they have the essential property that they cannot be forg d.
We will call a capability used for identification an access
key; it is a generalization of a domain name [52, Lampson] .
Then all the access control procedure Ax needs to know is
what access keys to recognize. Each user (indeed, each entity
which needs to be identified by an access control procedure)
obtains a unique access key from the supervisor, records it,
and transmits it to those who wish to grant him access. They
then program their access control procedures to return the
desired attributes when that key is presented as an argument

In order to avoid the inconvenience of arbitrary access
control procedures, one may attach to each object an access
lock list consisting of pairs (key value, access attributes). It
works in the obvious way: if the value of the key presented
matches the value in one of the locks, the corresponding
attribute is returned. Alternatively, one may regard this scheme
as a generalization of one of the first protection systems,
that of CTSS, which, instead of a key value, employed the
name of the user as identified at login [14, Crisman; [52,
Lampson] [85, Wilkes]

One access list per object is likely to be cumbersome.
Many systems group objects into directories, which in turn are
objects, so that a tree structure can be built up. This adds
nothing new, except that it introduces another kind of tree-
structured naming [85, Wilkes] . Observe that a directory is
not too much different from a domain in structure. The
access key method of obtaining access is, however, quite dif-
ferent in spirit from the capability method. Since it is also
likely to be more expensive, many systems have a hybrid im-
plementation according to which an object can be accessed
once by access key to obtain a capability, which is then used
for subsequent accesses. This process when applied to files is
usually called opening a file [51, Lampson] [52, Lampson] .

6.5 Memory Protection

Memory protection hardware is usually closely related to
mapping or relocation hardware. There are two aspects to
this:

1. Memory which is not in the range of the map cannot
be addressed and is therefore protated.

2. In paged or segmented systems (eean two-segment ones
like the PDP-10) each page or segment in the map may
have protection information associated with it.

The point is: each domain must have its own address space,
for otherwise there can be no protection [52, Lampson]
[53, Lampson] . It is also desirable for one domain to be able
to reference the memory of another, subject to the control
of the access matrix.

A segmented system in which any segment is potentially
accessible from any domain fits well into the framework of
Sections 6.2 and 6.3, usually with A implemented via capabil-
ities. [24, Dennis and Van Horn] [34, Graham] . It may be
an annoyance that a segment capability has a different form
than other capabilities, but this problem is minor. Some dif-
ficulties may arise, however, with transfers of control from
one domain to another, since the addressing hardware will not
normally allow the tree addressing and software must be used.
[34, Graham] .

www.manaraa.com

In the absence of segmentation either paces or files may
be treated as objects to be shared. Since the contents of the
page map can be changed when changing domains, there is a
feasible (though ar from elegant) means of sharing memory
when necessary while preserving the security of each domain.

In the absence of paging, each domain will have to have
private memory which is not accessible to any other domain,
except through some ugly circumlocution. The naming
problems which result have been considered in Module 5.
There is one exception to this observation for the case of
nested domains di dnli.e. A [di x.1 . .D A [dn,x]
for all x) on machines with base and bound relocation:
simply arrange the memory for the domains continuously,
with di nearest to location 0, and set the bound for di to
the total :..ngth of all the memory, for d2 to the total length
excluding di etc. Now only a simple addition is required for
d1 to interpret addresses in di, i <1. [38, Harrison] [53,
Lampson]

Module 6: Prote tion Topic Outline

6.1 Motivation

Keep users under control
Keep programs under control

6.2 Protection Domains

The idea of different contexts (domains)
An idealized system to clarify this idea

Processes communicating by messages, no sharing
Calls and returns are possible
Protection is obtained from the systern-supplied

domain name
Weaknesses of this system

No control over errant processes
Need conventions for cooperation between

processes

6.3 Objects and Access MatricesAnother Idealized System

Components of this sy temdcmains, objects,
access matrix

Access attributed
Changing access
Relation of protection to the rest ot the system

6.4 implementation Techniques

Storing the sparse matrix as triplesdrawbacks
Capabilities and C-lists
Tree-structured naming with capabilities
Access keys, procedures and lock lists
Directories
Hybrid implementations

6.5 Memory Protection

Memory as an object to be protec ed
Segments as objects
Pages as objects
Memory protection without mapping
Nested domains

Module 6: Protection Reference List Guide

types: C conceptual, D descriptive, E xample,
T tutorial

level: S student, A advanced student,
I instructor

Key Author Type Level Importance
14 Crisman (Sec_ AD) A 4
22 Dennis A 3
24 Dennis and Van Horn 1

34 Graham CE S 2

37 Hansen 1

38 Harrison A 3

43 Iliffe A 4
51 Lamson A 4
52 Lampson CE S 1

53 Lampsdn CE A 2

55 Linde et al. A 4

62 Molho et al. A 4

78 Vanderbilt 4
82 Weissman 2
85 Wilkes (pp 49-59, 1

75,90)

www.manaraa.com

MODULE 7 RESOURCE ALLOCATION

7.1 Introduction and Motivation

The previous modules have discussed techniques for proc-
ess communication, memo-y management, naming, and pro-
tection of objects. Little consideration has been given to the
effects of different choices on the attitude of the user and on
the performance of the system. Some of the techniques (e.g,,
multiprogramming) arise from the desire to have a system
which is not only correct, but efficient. Every system con-
sists of a set of available resources and a set of users who are
constantly demanding to use them. Examples of resources in-
clude processor time, memory space, peripherals, channels,
and data bases. Examples of consumers at different levels
include projects, users, programs, and processes. In a well
utilized system, some or all of the resources will be scarce,
and systems are considered balanced if all iesources are
equally scarce. In addition to the requirements of balanced
resource usage, efficiency, and smooth operations, most sys-
tems seek to allocate resources to maximize some measure of
"satisfaction" in the user community. The purpose of study-
ing resource allocation is investigating strategies for allocating
resources, and understanding their effects on system efficiency
service to the users.

There are two distinct and conflicting goals for resource
allocation. 1) Efficiencymeasures of equipment utilization,
cost of resources, balance, amount of useful computation,
throughput, and so on, are to be optimized. 2) Service
measures of user satisfaction, such as turnaround time, con-
sistency and integrity of the system, flexibility, problem solv-
ing ability, are to be optimized.

Computer Center managers have tended to stress optimi-
zation of throughput in batch-processing systems. Interactive
systems are stressing services as well.

Resources can be allocated in two extreme fashions: 1) A
user holds all the resources he reouir:T; for the ci
is active, e.g. batch-processing. 2) The system expends at
least as many resources optimizing the allocation as the opti-
mization saves. Between (1) and (2) there exists a reasonable
compromise. The purpose of an investigation of resource allo-
cation is to approximate the ideal compromise for a particular
system.

7.2 Allocation Strategies

In a system environment of scarce resources and demands
frequently exceeding the supply, some processes will have to
wait. The waiting processes are distributed in a system of
queues; a particular process, the scheduler, selects processes
from the queues to satisfy objectives of efficiency and service.
The scheduler determines how processes flow through the
queues and which process obtains a resource when it is free.
Schedulers normally use information from three possible
sources in making decisions: 1) from the user according to
external priorities, 2) from the compiler according to pre-
dicted properties of a program, and 3) from the system it-
self according to its state and the observed behavior of the
processes.

29

It is a policy decision to choose the source of information
for the scheduler and how it is used to regulate the progress
of processes. Examples of allocation strategies should be pre-
sented. There are two areas particular imoortance from
which they may be drawn.

Processor allocation: Considerable work has been done in
allocating processor time to processes, especially in time shar-
ing systems [12, Coffman] and 148, Kleinrock] . Processor
allocation disciplines should be discussed and their advantages
and disadvantages pointed out qualitatively. Quantitative
analysis of the disciplines should be postponed for later on.

Memory Management: Experience shows that memory is
one of the most precious resources in modern systems. In
Module 4 students were introduced to the concept of mem-
ory management policies. If he has not already done so, the
instructor should review examples of memory management
algor!thms, both for nonpaging [50, Knuth, Ch. 2] and for
paging environments [18, Denning] , [21, Denning] . The
properties of the working set model for program behavior
should be discussed [18, Denning] . The instructor should
point out how most paging systems prepage working sets to
a certain extent, viz., upon reinitiation of an interrupted
process.

Although these two problemsprocessor and memory
managementhave been studied separately in the literature,
the instructor should emphasize that there must be a close
working relationship between processor and memory manage-
ment policies, if only because each process demands the use
of these resources simultaneously. See [20, Denning] for one
view of this relationship, and [83, Wilkes] for another.

7,3 Stratc ,y evaluation

Common sense and intuition are not sufficient to devise a
good resource allocation strategy: the interactions among
proct ,es and resources are too complex. At the early stages
of time sharing, for example, en optimistic approach was
commonplace with respect to memory management, virtual
memory being considered the answer to the space squeeze
problem. The phenomenon of thrashing has made designers
aware of the difficulties [19, Denning] and [21, Denning] ,
and has demonstrated the need for careful investigation of the
properties of allocation disciplines.

The following is an important trade off between memory
utilization and processor utilization, its solution being repre-
sented by an optimal degree of multiprogramming. Analysis,
rather than intuition, must be used to evaluate it. On the one
hand, if many processes are kept active (working sets loaded
in memory) the processor has little chance of remaining idle.
Since the amount of memory is fixed, each process has less
available main storage, and more page faults will be generated.
On the other hand, if few processes are kept active there is
more than enough space to contain their working sets, but
the processor is likely to be excessively idle due to input-
output waits blocking the processes.

To evaluate allocation strategies, one uses analysis,
experimentation, or both. Analytic models are useful since

www.manaraa.com

they typically are computationally convenient to work with,
they can be constructed even though the systems being
modelled do riot exist, and they can be used to predict
optimal results. Two classes of models are in use.

Probability Models Probabilistic assumptions are made for
the inter-arrival times and magnitudes of demands on a system.
The system is analyzed to determine various quantities of inter-
est, such as lengths of queues, waiting times in queues, or ef-
ficiency. Probability models have been used most extensively
in analyzing queues awaiting service on a processor [60,
McKinney] , for analyzing the operation of rotating (drum-
like) storage devices [1, Abate] , [17, Denning] and for
analyzing certain aspects of program behavior [21, Denning) .
Many of the queueing models for processor scheduling prob-
lems have lost their applicability to modern systems: whereas
modern systems induce a flow of jobs through a network of
queues with many points of congestion (processor, input-
output, etc.), the "classical" analyses deal with systems con-
taining only a single point of congestion (processor). No
literature on queueing-network models for contemporary sys-
tems was available at the time of this writing, but the instruc-
tor may wish to investigate the recent literature for such models.

Since many analyses are carried out under the assumption
that important probability distributions are exponential, the
instructor should review the experimental verification of sit-
uations in which exponential assumptions are valid [32,
Fuchs] .

Deterministic and Discrete Models: Models which do not
depend on probability assumptions have been used to analyze
resource allocation problems. These include analyses of the
deadlock problem [11, Coffman] [35, Habermann] , analyses
of paging algorithm behavior 158, Mattson] , and various
analyses of deterministic scheduling problems [57, Manacher]

Since they must be simple to be tractable, analytic models
have limitations. There often is a conflict between simplicity
on the one hand and realism on the other. Thus, experimental
testing and verification is of great importance ir dealing with
complex situations, though often at considerable expense.
There are two kinds of experimental techniques: simulation
and a posteriori evaluation. From a practical point of view,
the chief difference between the two techniques is that simu-
lation results can be obtained prior to the implementation of
a system; in contrast, a posteriori evaluation allows one to
obtain results under actual vvorking conditions. In either case,
the effects of various resource allocation strategies can be
tested and compared [3, Arden] , [56, MacDougall] , [73,
Saltzer] , [87, Wulf] .

Analytic models and experimental results are often com-
plementary. Experiments are used to verify assumptions
for use in the models. A model can be used to obtain approx-
imate results for checking the reasonableness of simulation
results. No experimental work can succeed without some in-
herent model of system behavior: the presupposed model
influences the experimenter in his choice of experiments,
level of detail, or choice of parameters.

7.4 Balancing Resources Against Demands

Balanced usage of resources has been found important,
since an imbalance (e.g overload) in the use of one resource

can generate an imbalance in the use of others For example,
an overloaded input-output channel can make it impossible
to keep the most useful information in main memory. Or,
attempted ovek-commitment of main memory can generate
serious under utilizaticn of processor [19, Denning) Or, a

process cannot effectively utilize a processor unless it has a
"working-set amount" of memory allocated to it [18,
Denning] . These are examples of the general principle that
there often exists a critical amount of resource A to make
fruitful the allocation of another resource B.

A balanced resource allocation policy implements this
principle by regulating membership in the set of active proc-
esses such that the total demand of that set matches the
available equipment, and the probability of overloading any
type of resource is controlled. A wide range of service objec-
tives is implementable within the constraint of a balanced
resource allocation policy. Specifyiog the equipment configu-
rat;on (relative cap- '7,it:es of the various resource types) is
straightforward when a balanced resource allocation policy
is used. See [20, Denning] .

Module 7: Resource Allocation Topic Outline

7.1 Introduction and motivation

7.2 Allocation strategies

Source and nature of priorities
Processor allocation
Memory allocation
Unified approaches to proce r-memory allocation

7.3 Strategy Evaluation

Probability models
Deterministic and discrete models
Simulation
a posteriori evaluati n

7.4 Balancing resources against demands
Critical amount of one resource needed to allocate

another
Balanced resource allocation policy
Equipment configuration

Module 7:Resource Allocation Reference List Guide

types: C conceptual, D descriptive, E example,
T tutorial

level: S student, A advanced student,
I instructor

Key Author Type Level Importance
1

3

Abate and Dubner
Arden and Boettner

A
A

11 Coffman, et al. CT S 1

12 Coffman arid Kleinrock 0 S 2
17 Denning 3
18 Denning A 1

19 Denning 72

20 Denning A 3
21 Denning 1

32 Fuchs and Jackson CE I 2
35 Habermann A 2
48 Kleinrock a

33

www.manaraa.com

Key Author Type Level I mportance
50 Knuth DE A 3
56 MacDougall CD 8 2
57 Manacher C A 2
58 Mattson et al C A
60 McKinney C S 1

73 Saltzer and Gintell C A 2
83 Wilkes C A 3
67 Wulf E A 2

31

4

www.manaraa.com

MODULE 8 - PRAG

This final module treats the aspects of operating systems
which are not yet well enough understood to warrant separate
treatment. Most of these aspects concern the design, the im-
plementation and the maintenance of systems. Because they
are relegated to an inferior position at the end of the course,
the instructor should not lead the students to believe that
these topics are of less importance. Quite the opposite:
pragmatic aspects of system design can make the difference
between success and failure. The students, however, can
hardly be expected to appreciate what is yet unclear to the
expert and unfamiliar to the average lecturer.

As the field of operating systems matures, one would
expect these topics to become structured and well under-
stood. It eien will be possible for the instructor to treat these
topics by means of abstractions, even as the topics of Mod-
ules 2-8 have been treated.

8.1 Design

The instructor should review and illustrate several of the
current viewpoints on the methodologies of system design,
comparing their pros and cons. More than one of the views
outlined below may apply to a given system.

The level approach. This methodology is exemplified in
the design of the THE system [28, Dijkstra] . One rre,
imagine a series of machines M0,44/, . Mk, and pro-
grams P7, P2, ... ,Pk,.. such that Mo is the given system
hardware and Mk is an extension of Mk=1 produced by Pk
The extended machines M1,M2, . . . ,M k , . . . are called the
"levels" of the system. Note that a process existing in level
k may invoke the services of any process in levels k or lower,
but not in any level above k. If the levels are carefully chosen,
this approach can have decided advantages with respect to clar-
ity of description and elegance of design. Most important of
all, however, this approach lends itself oviiig a priori the
correctness of the design: one proves by induction that the
correctness of Mk1 and Pk implies that of Mk. This has clear
advantages in the step-by-step construction and debugging of
the system. The greatest difficulty with this approach is the
problem of choosMg what the levels should be.

The top-down approach. The design starts from a general
description of the system and, by steadily adding detail, even-
tually is sufficiently detailed that it can be run on a machine.
Conceptually, the design proceeds by successive refinements
of system modules, each module being described by its ter-
minal behavior; having proceeded k steps into the design, one
proceeds to the (k+1)st step by subdividing some module into
a network of simpler Modules. Eventually, each module is a
simple macro which can be programmed directly on the ma-
chine. In practice, this design process consists of successively
detailed simulation programs; when the last step is reached
the final simulation program is the complete operating sys-
tem [88, Zurcher]. The advantage of this approach is: the
presence of the actual hardware is not required at the begin-
ning; the designer needs only to know its properties. The
disadvantage of this approach is a tendency toward infinite
regression in the successive refinements of modules, coupled

ATIC ASPECTS

with the possibility that the final set of simple modules may
not interface efficiently wi ii the existing hardware. (The
task force is not aware of any successful system that has
been constructed using this approach alone.)

The nucleus-extension approach. One identifies the mini-
mal elements of an operating system and provides a -nu-
cleus" of programs providing these elements. It is then the
responsibility of programmers to add to thisextend itin
ways that meet their requirements. In the RC-4000 system,
the nucleus was taken to be the interprocess message trans-
mission facility [36, Hansen] [37, Hansen] The principal
advantage is the ability to get a minimal system operating in a
short time; the disadvantage is that more system-development
work is placed on the system's users. There is, of course, an
analogy between the nucleus of this type system and the
lowest levels of a level-structured system.

The modules-interface approach. The system is partitioned
as finely as possible into its constituent functions, each func-
tion then being implemented as an operating system module.
The system designer's task is to identify the modules and
specify their interfaces [42, IBM] . This is the method most
widely used in systems design. Its chief attraction is that it
does not require a great deal of initial planning, as would be
required in the three approaches discussed earlier. Experience
seems to be quite clear on this point: by allowing the design
to be started without adequate preplanning, serious slippage
of design deadlines may be the result. (The problems with
0S1360, MULTICS, and other large systems are cases in
point.) More specifically, designers tend to minimize the
complexity of their modules and pay little attention to the
complexity of the interfaces. In practice, the resulting inter-
faces are so complex as to be incomprehensible; worse still,
the entire system may be extremely sensitive to change, be
unstable, or exhibit bottlenecks in unforeseen places. In
other words, it is very hard to predict in advance exactly how
the system will behave.

Data base or transaction oriented systems. In certain cases
(e.g. reservation or telephone-switching systems) the data
base or the transactions to be performed on the system are
specified well in advance. The designer has little flexibility,
being constrained to build the system to accommodate the
existing data base or transaction structures. As an_example
the Bell Telephone ESS system may be discussed146,
Keisteri .

Finally there is a collection of ad hoc "seat of the pants"
techniques used quite often out of expediency to design and
implement systems. They are almost always never successful
since they attempt to design a complex system without fore-
thought. The following two can be cited as examples:

The iteration method. Build a version of the system and
continuously iterate and modify it to meet the demands and
rectify complaints. When this has been done, the result has
always been utter confusion for designers, programmers
and users.

The deadline method. Get started in an arbitrary fashion,
making ad hoc decisions as necessary so that parts of the

35

www.manaraa.com

system are running by specified dates, no matter what. When
this has been done, it has normally been necessa y to start
over again once the deadline is met and the demonstratioi .
is given.

8.2 Reliability

Logical correctness and tolerance to error are prime con-
siderations in operating systems design. The reliability re-
quirements placed on many contemporary systemsespecially
when users become dependent on the systemoften mean
that the system must be more reliable than the hardware on
which it is built. Logical correctness, together with the ability
to test and verify e-rectness, can be invaluable in solving the
reliability problem, since then errors can be attributed to
hardware failure only. (The THE system is the only system
known to the committee which was designed for -correct-
ness" [28, Dijkstra] , [29, Dijkstra] .)

One important design consideration is that the effect of an
error should be localized, so that the fewest users are affected
by it and that recovery may be as rapid as possible. The big-
gest single reliability problem is integrity, i.e , protection
against loss of information when an error occurs. Four tech-
niques are commonly used to provide integrity. 1) As the
importance of ,:ata increases, so the probability that an error
destroys it should decrease; many designers use the rule of
thumb that the fraction of time a given data base is being
accessed is inversely proportional to its importance. 2) As
the importance of data increases, so should its redundancy.
Thus, important system tables can be reconstructed from in-
formation in other system tables. The redundant copies should
reside in different physical parts of the system. 3) Critical
data is checked from time to time for consistency. 4) Incre-
mental dumping is used to copy files into archives, shortly
after those files are updated. Thus the archives contain re-
cent copies of all files, should one of the files in the system
proper be destroyed. (See [85, Wilkes, pp 86, 90] .)

Finally, recovery and restart facilities are an important
design consideration and should never be an afterthought.
Hardware failure should be considered realistically. The
weaknesses of each piece of equipment should be under-
stood clearly. The system should overcome, not enhance,
the hardware difficulties [65, NATO, pp 149-153].

8.3 Implementation

Material covering the difficulties encountered during
implementation of large software systems can be drawn
from the two NATO Reports on Software Engineering [65,
NATO] , [66, NATO] . Management aspects, and production
aspects as well, of large software systems can be emphasized.

Planning. The problems common in the design and im-
plementation of large software packages include personnel,
project organization, and human factors [61, Mealy] , [65,
NATO pp 72-891 .

Choice of implementation language. The advantage of a
higher level language like PL/1, BCPL, PL/360 cannot be
overstated [65, NATO pp 55-591 .

Portability. The production of software as machine inde-
pendent as possible will eventually enable programs to be
transported from one installation to another. [66, NATO
pp 28-33] .

Debugging. Debugging facilities and check qput proc-eiures
are invaluable to programmers and implementor. [66,
NATO pp 23-25] .

Documentation. Good documentation on production and
service is extremely important [65, NATO pp 116-117, pp
209-2111 . Automatic flowcharting techniques are often
used to assist in documenting programs [2, Abrams] .

8.4 arformance Monitoring and Evaluation

The field of measurement, evaluation, and tuning uf oper-
ating systems is progressing rapidly [9, Calingaert] [39, Hart]
[65, NATO pp 200-203] . The relative advantages of hard-
ware versus sohware measuring tools should be discussed,
[79, Warner], but the problem of data reduction is beyond
the scope of this course. Techniques for regulating progress
of processes and for -tuning" the system are related both to
perfce mance monitoring and to resource allocation [88,
Wulf] , [20, Denning].

Again we stress that the students should realize that these
problems are very important. That there are no unifying ab-
stractions to be presented does not necessarily mean that the
topics should be ignored. The students should be aware of the
difficulties and the existence of limited solutions, even ad
hoc ones.

Module 8: Pragmatic Aspects Topic Outline

8.1 Design

Levels approach
Top-down approach
Nucleus-extension approach
Modules-interface approach
Data base or transaction oriented
-Seat of the pants" techniques

a

81 Reliability

Design for reliability
System Integrity

8.3 Implementation

Personnel and project organization
Implementation languages
Portability
Debuggaig
Documentation

8.4 Performance Mearement and Evaluation
Measurement
Evaluation and Tuning

Module:8: Pragmatic Aspects Reference List Guide

types: C conceptual,13 descriptive, E example,
T tutorial

level: S student, A advanced student,
I instructor

www.manaraa.com

Key Author Type Level Importance
2 Abrams D S 4
9 Calingaert 0 A 3

20 Denrung C I 3
28 Dijkstra D S 1

29 Dijkstra C A 1

36 Hansen D A 2
37 Hansen 0 S 1

39 Hari D B 3
42 IBM D I 3
46 Keister D $ 2
61 Mealy D A 3
65 NATO D S 2
66 NATo D S 2
79 Warner 0 5 3
85 Wilkes T 3 1

87 Wulf D A 3
88 Zurcher and Randell C A 2

34 7

www.manaraa.com

El BLI Or-RAPHY

The following abbreviations are used in the bibliography.

ACM Association for Computing Machinery
IEEE Institute for electrical and electronics

engineers
IEEETC IEEE Transactions on Computers
CACM Communications of the ACM
JACM Journal of the ACM
CS Computing Surveys (ACM)
FJCC Fall Joint Computer Conference
SJCC Spring Joint Computer Conference
2SOSP Second Symposium on Operating Systems

Principles (proceedings available from ACM,
1133 Avenue of Americas, New York, N.Y.
10036)

1. Abate, J., and Dubner, H. Optimizing the Performance
of a Drum-Like Storage. IEEE Trans. C-18, 11 (Nov,
(Nov. 1969), 992-997.

2. Abrams, M. A Comparative Sampling of the Systems
for Producini Computer-Drawn Flowcharts. Proc. 1968
ACM Nat. Conference.

3. Arden, B. and Boettner, D. Measurement and Perform-
ance of a Multiprogrammed System. Proc. 2SOSP
(Oct. 1969).
Be lady, L.A. A Study of Replacement Al orithms for
Virtual Storage Computers. IBM Sys. J. 5, 2 (1966),
78-101.

5. Bell, C.G. and Newell, A. Computer Structures: Read-
ings and Examples. Chapt. 3, McGraw Hill (1971).

6. Bensoussan, A., Clingen, C.T., and Daley, B.C. The
Multics Virtual Memory. Proc. 2SOSP (Oct. 1969).

7. Bernstein, A.J. et al. Process Control and Communica-
tion. Proc. 2SOSP (Oct. 1969).

8. Betourne, C., et al. Process Management and Resource
Sharing in the Multiaccess System 'ESOPE". CACM 13,
12, (Dec. 1970).

9. Calingaert P. System Performance Evaluation Survey
and Appraisal. CACM (Jan. 1967).

10. Clark, W.A. The Functional Structure of OS/360,
Part Ill: Data Management. IBM Sys. J. 5, 1 (1966),
30-51.

11. Coffman, E.G., Elphick, M., and Shoshani, A. System
Deadlocks. CS 3, 2 (June 1971).

12. Coffman, E., and Kleinrock L. Computer Scheduling
Measures and Their Countermeasures. AFIPS Conf.
Proc. 32 (1968 SJCC).

13. Corbató, F.J. and Vyssotsky, V.A. Introduction and
Overview of the Multics System. AFIPS Conf. Proc. 27
1965 FJCC), 185-196.

14. Crisman, P.A. The Compatible Time-sharing System; A
Programmer's Guide. MIT Press, 2nd Edition, Cam-
bridge, Mass. (1965).

35

28

15. Daley, R.C., an.; Dennis, J.B. Virtual Me ory, Proc-
esses, and Sharing in MULT ICS. CACM 11, 5 (May
1968), 306-312.

16. Daley, B.C., and Neumann, P.G. A General-Purpose
File System for Secondary Storage. AF1PS Conf.
Proc. 27 (1965 FJCC), 213-229.

17. Denning, P.J. Effects of Scheduling on File Memory
Operations. AFIPS Conf. Proc. 30 (196/ SJCC), 9-22.

18. Denning, P.J. The Working Set Model for Program
Behavior. Comm. ACM 11, 5 (May 1968), 323-333.

19. Denning, P.J. Thrashing: Its Causes and Prevention.
APIPS Conf. Proc. 33 (1968 FJCC), 915-922.

20. Denning, P.J. Equipment Configuration in Balanced
Computer Systems. IEEETC C-18 (Nov. 1969), 1008-
1012.

21. Denning, P.J. Virtual Memory. CS 2, 3 (Sept. 1970),
153-189.

22. Dennis, J.B. Segmentation and the Design of Multi-
programmed Computer Systems. JACM 12, 4 (Oct.
1965), 589-602.

23. Dennis. J.B. A Position Paper on Computing and Com-
munications. CACM 11, 5 (May 1968), 370-377.

24. Dennis, J.B., and Van Horn, E.C. Procramming Seman-
tics for Multiprogrammed Computations. CACM 9,
3 (Mar. 1966), 143-155.

25. Dennis, J.B. et. al. Computation Structures. Chapt. 8,
Class notes for Subject 6.232, MIT (1970). [Available
from: MIT, Rm. 4-213, Cambridge, Mass. 02139.1

26. Dijkstra, E.W. Solution of a Problem in Concurrent
Programming Control. CACM 8, 9 (Sept 1965), 569.

27. Dijkstra, E.W. Cooperating Sequential Processes.
Programming Languages (F. Genuys, ed.), Academic
Press (1968), 43-112.

28. Dijkstra, E.W. The Structure of THE Multiprogramming
System. CACM 11, 5 (May 1968), 341-346.

29. Dijkstra E. A constructive approach to the problem of
program correctness. BIT 8 (1968).

30. Fano, R.M. and Corbatci, F.J. Time Sharing on Com-
puters Sci. Amer. 215, 3 (Sept. 1966), 129-140.

31. Foster, J.M. List processing Macdonald and Co.,
London (1967).

32. Fuchs, E., and Jackson, P.E. Estimates of Random
Variables for Certain Computer Communications
Traffic Models. CACM 13, 12, (Dee. 1970).

33. Gear, C.W. Computer Organization and Programming,
McGraw MI (1969).

34. Graham, R.M. Protection in an information Processing
Utility. CACM 11, 5 I,May 1968),368.

35. Habermann, N. Prevention of System Deadlocks.
CACM 12, (July 1969).

www.manaraa.com

36. Hansen, P.B. (ed.) RC4000 Software Multiprogramming
Systeu, A/S Regnecentralen, April 1969, Falkoner
Al le 1, Copenhagen F. Denmark.

37. Hansen, P.R. The Nucleus of a Multiprogramming Sys-
tern, CACM 13 (April 1970), 238.

Harrison, M.C. Implementation of the SHAR ER2 Time-
Sharing System. CACM 11, 12 (Dec. 1968), 845.

39. Hart, L.E. The User's Guide to Evaluation Produc
Datamation 17, 1 (Dec. 1970).

40. Hellerman, H. Digital Computer System Principles.
McGraw Hill (1967).

41. Horning J.J., and Randell, B. Structuring Complex
Processes, I BM Research Rpt. RC2459 (May 2, 1969),
IBM Research Center, P.O. Box 218, Yorktown
Heigh:.s, N.Y. 10598.

42. IBM. OS/360 Concepts and Facilities. In Programming
Languages and Systems. (S. Rosen, Ed.), McGraw-Hill
(1967), 598.

43. Iliffe, J.K. Basic Machine Principles. American Elsevier
(1968).

44. Iliffe, J.K., and Jodeit, J.G. A Dynamic Storage Allo-
cation Scheme. The Computer Journal (Oct. 1962),
200-209.

45. Jodeit, J.G. Storage Organization in Programming
Systems, CACM 11, 11 (Nov. 1968), 741-746.

46. Keister, W. et al. No. 1 ESS: System Organization and
Objectives. Bell System Technical Journal 43, 5 (Sept.
1964), 1831-1844.

47. Kilburn, T. et al. One-Level Storage Sy t m. IRE
Trans. EC-11, 2 (Apr. 1962), 223-235.

48. Kleinrock, L. A Continuum of Time Sharing Algorithms.
Proc. AFIPS Conf. 36 (1970 SJCC)

49. Knuth, D.E. Additional Comments on a Problem in Con-
current Programming. CACM 9 (May 1966), 321-323.

50. Knuth, D.E. The Art of Computer Programming
(Vol. 1). Addison- Wesley (1968), Ch. 2.

51. Lampson, B.W., et al. A User Machine in a Time-
sharing System. Proc. IEEE 54, 12 (Dec. 1966).

Lampson, B.W. Dynamic Protection Structures.
Proc. AFIPS Conf. 35 (1969 FJCC).

53. Lampson, B.W. On Reliable and Extensible Operating
Systems. Infotech State of the Art Proceedings (1970).

54. Lanzano, B.C. Loader Standardization for Overlay
Programs. CACM 12, (Oct. 1969), 541-550.

55. Linde, R.R., et al. The ADEPT-50 Time Sharing Sys-
tem. Proc. AFIPS Conf. 35 (1969 FJCC).

56. MacDougall, M.H. Computer System Simulation: An
Introduction. CS 2, 3 (Sept. 1970), 191-210.

57. Manacher, G.K. Production and Stabilization of Real-
Time Task Schedules. jACM 14, 3 (July 1967)
439-465.

58. Mattson, R.L., Gecsei, J., SI utz, D.R., and Traiger, I.L.
Evaluation Techniques for Storage Hierarchies. IBM
Sys. J. 9, 2 (1970), 78-117.

59. McCarthy, J., Corbato, F.J., and Dagg M.M. ihe
Linking Segment Subprogram Lanauage and Linking
Loader. CACM 6, 7 (July 1963), 391-395. In Rosen, S.
(ed), Programming Languages and Systems, McGraw
Hill (1967).

60. McKinney, J.M. A Survey of Analytical Time-Sharing
Models. CS 1, 2 (June 1969) 105-116.

61. Mealy, G. The System Design Cycle. Proc. 2SOSP.
(Oct. 1969).

62. Molho, L. Hardware Aspects of Secure Computing.
Proc. AFIPS Conf. 36 (1970 SJCC), 135.

63. Morris, R. Scatter Storage Techniques. CACM 11, 1
(Jan. 1968), 38-44.

64. Murphy, J.E. Resource Allocation with Interlock De c-

tion in a Multi-task System. AFIPS Conf. Proc. 33
(1968 FJCC), 1169-1176.

65. NATO Report on SOFTWARE ENGINEERING,
Garmish, Oct 1968. Available free of charge through
NATO, Dr. H. Arnth-Jensen, Scientific Affairs Division,
OTAN/NATO, 1110 Bruxelles, Belgium.

66. NATO Report on SOFTWARE ENGINEERING, Rome,
Oct. 1969. Available free of charge through NATO,
Dr. H. Arnth-Jensen, Scientific Affairs Division,
OTAN/NATO, 1110 Bruxelles, Belgium.

67. Naur, P., et al. Revised ALGOL Report. CACM 6, 1
(Jan. 1963), 1-17. In Rosen, S. (ed.), Programming
Lgnguages and Systems, McGraw (1967).

68. Pankhurst, R.J. Program Overlay Techniques. CACM 11,
2 (Feb. 1968), 119-125.

69. D. Challenge of the Computer Utility.
Addison Wesley (1966).

70. Randell, 13., and Kuehner, C.J. Dynamic Storage Allo-
cation Systems. Comm. ACM 11, 5 (May 1968), 297-
305.

71. Randell, B. and Russell, L.J. ALGOL 60 Implernen
tion. Academic Press (1964).

72. Seltzer, J.H. Traffic Control in a Multiplexed Computer
System. MIT Project MAC Rpt MAC-TR-30 (1966),
Project MAC, 545 Technology Square, Cambridge,
Mass. 02139.

73. Seltzer, J., and Gintell, J. The Instrumentation of
--MULTICS. CACM 13, (Aug. 1970).

74. Sayre, D. Is Automatic Folding of Programs Efficient
Enough to Displace Manual? CACM 12, 12 (Dec. 1969),
656-660.

75. Sharpe, W.F. The Economics of Compute (Chapt.
10). Columbia University Press (1969).

76. Spier, M.J., and Organick, E.I. The MULTICS Inter-
process Communication Facility. Proc. 2SOSP.
(Oct. 1969).

77. Subcommittee of the American Standards Association
Sectional Committee X3, Computers and Information
Processing. FORTRAN vs. Basic FORTRANA Pro-

www.manaraa.com

grarnrning Language for Information Processing on
Automatic Data Processing Systems. CACM 7, 10
(Oct. 1964), 591-624.

78. Vanderbilt, D.H. Controlled Information Sharing in a
Computer Utility. MAC-TR-67, MIT, October 1969,
Document Room, Project MAC, 545 Technology
Square, Carr ridge, Mass. 02139.

79. Warner, C.D. Monitoring: A Key to Cost Efficiency.
Datamation 16, 17 (Jan. 1971).

80. Wegner, P. Communication between independently
Translated Blocks. CACM (July 1962), 376-381,

81. Wegner, P. Programming Languages, Information
Structures and Machine Organization. (Sections 4.1-
4.7), McGraw Hill (1968).

82. Weissman, C. Security Controls in the ADEPT-50
Time-Sharing System. Proc. AFIPS Conf. 35 (1969
EJCC), 119.

83. Wilkes, M.V. A Model for Core Space Allocation in a
Time Sharing System. AFIPS Conf. Proc, 34 (1969
SJCC), 265-271.

8 . Wilkes, M.V. Slave Memories and Dynamic Storage
Allocation. IEEE Trans. EC-14 (Apr. 1965), 270-271.

85. Wilkes, M.V. Time-Sharing Computer Systerns Am.
Elsevier (1968).

86. Wirth, N. On Multiprogramming Machine Coding and
Computer Organizations. CACM 12, 9 (Sept. 1969),
489-498.

87. Wulf, W.A. Performance Monitors for Multipro-
gramming Systems. Proc. 2SOSP (Oct. 1969).

88. Zurcher, F. and Randell, B. Iterative Multi-Level
Modelling. A Methodology for Computer System.
IFIP Congress 68, Edinburgh, Scotland, (Aug. 1968).

37

